SYS-CON MEDIA Authors: Xenia von Wedel, Peter Silva, Glenn Rossman, Ava Smith, Elizabeth White

News Feed Item

A better way to cloud: TI's new KeyStone multicore SoCs revitalize cloud applications, enabling new capabilities and a quantum leap in performance at significantly reduced power consumption

- Industry's first implementation of quad ARM® Cortex™-A15 MPCore™ processors in infrastructure-class embedded SoC offers developers exceptional capacity & performance at significantly reduced power for networking, high performance computing, gaming and m

MUNICH, Nov.13, 2012 /PRNewswire/ -- ELECTRONICA -- To most technologists, cloud computing is about applications, servers, storage and connectivity. To Texas Instruments Incorporated (TI) (NASDAQ: TXN) it means much more. Today, TI is unveiling a BETTER way to cloud with six new multicore System-on-Chips (SoCs). Based on its award winning KeyStone architecture, TI's SoCs are designed to revitalize cloud computing, inject new verve and excitement into pivotal infrastructure systems and, despite their feature rich specifications and superior performance, actually reduce energy consumption.

To view the multimedia assets associated with this release, please click: http://www.multivu.com/mnr/54044-texas-instruments-keystone-multicore-socs-revitalize-cloud-applications 

To TI, a BETTER way to cloud means:

  • Safer communities thanks to enhanced weather modeling;
  • Higher returns from time sensitive financial analysis;
  • Improved productivity and safety in energy exploration;
  • Faster commuting on safer highways in safer cars;  
  • Exceptional video on any screen, anywhere, any time;
  • More productive and environmentally friendly factories; and
  • An overall reduction in energy consumption for a greener planet.

TI's new KeyStone multicore SoCs are enabling this – and much more. These 28-nm devices integrate TI's fixed-and floating-point TMS320C66x digital signal processor (DSP) generation cores – yielding the best performance per watt ratio in the DSP industry – with multiple ARM® Cortex™-A15 MPCore™ processors – delivering unprecedented processing capability combined with low power consumption – facilitating the development of a wide-range of infrastructure applications that can enable more efficient cloud experiences. The unique combination of Cortex-A15 processors and C66x DSP cores, with built-in packet processing and Ethernet switching, is designed to efficiently offload and enhance the cloud's first generation general purpose servers; servers that struggle with big data applications like high performance computing and video processing.

"Using multicore DSPs in a cloud environment enables significant performance and operational advantages with accelerated compute intensive cloud applications," said Rob Sherrard, VP of Service Delivery, Nimbix. "When selecting DSP technology for our accelerated cloud compute environment, TI's KeyStone multicore SoCs were the obvious choice. TI's multicore software enables easy integration for a variety of high performance cloud workloads like video, imaging, analytics and computing and we look forward to working with TI to help bring significant OPEX savings to high performance compute users."

TI's six new high-performance SoCs include the 66AK2E02, 66AK2E05, 66AK2H06, 66AK2H12, AM5K2E02 and AM5K2E04, all based on the KeyStone multicore architecture. With KeyStone's low latency high bandwidth multicore shared memory controller (MSMC), these new SoCs yield 50 percent higher memory throughput when compared to other RISC-based SoCs. Together, these processing elements, with the integration of security processing, networking and switching, reduce system cost and power consumption, allowing developers to support the development of more cost-efficient, green applications and workloads, including high performance computing, video delivery and media and image processing. With the matchless combination TI has integrated into its newest multicore SoCs, developers of media and image processing applications will also create highly dense media solutions.

KeyStone Multicore SoC

Features  

Applications  


66AK2E02

 

 

 

66AK2E05

1 Cortex-A15 processor

1 C66x DSP

 

4 Cortex-A15 processors

1 C66x DSP

Enterprise video, IP cameras (IPNC), traffic systems (ITS), video analytics, industrial imaging, voice gateways, portable medical devices


66AK2H06

 

 

 

66AK2H12

 

2 Cortex-A15 processors

4 C66x DSPs

 

4 Cortex-A15 processors

8 C66x DSPs

High performance computing, media processing, video conferencing, off-line image processing & analytics, video recorders (DVR/NVR), gaming, virtual desktop infrastructure, medical imaging


AM5K2E02

 

 

AM5K2E04

2 Cortex-A15 processors

 

4 Cortex-A15 processors

 

Cloud infrastructure, routers, switches, networking control plane, wireless transport, radio network control, industrial sensor control


"Visionary and innovative are two words that come to mind when working with TI's KeyStone devices," said Joe Ye, CEO, CyWee. "Our goal is to offer solutions that merge the digital and physical worlds, and with TI's new SoCs we are one step closer to making this a reality by pushing state-of-the-art video to virtualized server environments. Our collaboration with TI should enable developers to deliver richer multimedia experiences in a variety of cloud-based markets, including cloud gaming, virtual office, video conferencing and remote education."

Simplified development with complete tools and support
TI continues to ease development with its scalable KeyStone architecture, comprehensive software platform and low-cost tools. In the past two years, TI has developed over 20 software compatible multicore devices, including variations of DSP-based solutions, ARM-based solutions and hybrid solutions with both DSP and ARM-based processing, all based on two generations of the KeyStone architecture. With compatible platforms across TI's multicore DSPs and SoCs, customers can more easily design integrated, power and cost-efficient products for high-performance markets from a range of devices, starting at just $30 and operating at a clock rate of 850MHz all the way to 15GHz of total processing power.

TI is also making it easier for developers to quickly get started with its KeyStone multicore solutions by offering easy-to-use, evaluation modules (EVMs) for less than $1K, reducing developers' programming burdens and speeding development time with a robust ecosystem of multicore tools and software.

In addition, TI's Design Network features a worldwide community of respected and well established companies offering products and services that support TI multicore solutions. Companies offering supporting solutions to TI's newest KeyStone-based multicore SoCs include 3L Ltd., 6WIND, Advantech, Aricent, Azcom Technology, Canonical, CriticalBlue Enea, Ittiam Systems, Mentor Graphics, mimoOn, MontaVista Software, Nash Technologies, PolyCore Software and Wind River.

Availability and pricing

TI's 66AK2Hx SoCs are currently available for sampling, with broader device availability in 1Q13 and EVM availability in 2Q13. AM5K2Ex and 66AK2Ex samples and EVMs will be available in the second half of 2013. Pricing for these devices will start at $49 for 1 KU.

Visit TI @ Electronica 2012

While at Electronica, visit TI at Booth 420 (Hall A4) to learn more about the latest embedded processing and analog news, and to check out a broad range of TI-based demos. For more information please visit www.ti.com/electronica2012.

Do MORE with MULTICORE:

About TI's KeyStone multicore architecture
TI's KeyStone multicore architecture is the platform for true multicore innovation, offering developers a robust portfolio of high performance, low-power multicore devices. Unleashing breakthrough performance, the KeyStone architecture is the foundation upon which TI's new TMS320C66x DSP generation was developed. KeyStone differs from any other multicore architecture as it has the capacity to provide full processing capability to every core in a multicore device. KeyStone-based devices are optimized for high performance markets including wireless base stations, mission critical, test and automation, medical imaging and high performance computing. Learn more at www.ti.com/multicore.

About the Texas Instruments ARM® Processor Portfolio

TI's extensive ARM processor portfolio offers optimized silicon, software and development tools for industries such as automotive, industrial, cloud infrastructure, computing, healthcare, education, retail and home and building automation. With more than 500 ARM products that start at $1 and scale up to 5 GHz in performance, TI has shipped more than seven billion ARM-based processors since 1993, including ARM Cortex-A, Cortex-R and Cortex-M foundations.  For more information, visit www.ti.com/arm.

About Texas Instruments
Texas Instruments semiconductor innovations help 90,000 customers unlock the possibilities of the world as it could be – smarter, safer, greener, healthier and more fun. Our commitment to building a better future is ingrained in everything we do – from the responsible manufacturing of our semiconductors, to caring for our employees, to giving back inside our communities. This is just the beginning of our story.  Learn more at www.ti.com.

Trademarks
All trademarks are the property of their respective owners.

TXN-P

SOURCE Texas Instruments

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
High-performing enterprise Software Quality Assurance (SQA) teams validate systems that are ready for use - getting most actively involved as components integrate and form complete systems. These teams catch and report on defects, making sure the customer gets the best software possible. SQA teams have leveraged automation and virtualization to execute more thorough testing in less time - bringing Dev and Ops together, ensuring production readiness. Does the emergence of DevOps mean the end of E...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will w...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective ...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happe...
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrateg...
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water,...
DevOps is all about agility. However, you don't want to be on a high-speed bus to nowhere. The right DevOps approach controls velocity with a tight feedback loop that not only consists of operational data but also incorporates business context. With a business context in the decision making, the right business priorities are incorporated, which results in a higher value creation. In his session at DevOps Summit, Todd Rader, Solutions Architect at AppDynamics, discussed key monitoring techniques...
Want to enable self-service provisioning of application environments in minutes that mirror production? Can you automatically provide rich data with code-level detail back to the developers when issues occur in production? In his session at DevOps Summit, David Tesar, Microsoft Technical Evangelist on Microsoft Azure and DevOps, will discuss how to accomplish this and more utilizing technologies such as Microsoft Azure, Visual Studio online, and Application Insights in this demo-heavy session.
When an enterprise builds a hybrid IaaS cloud connecting its data center to one or more public clouds, security is often a major topic along with the other challenges involved. Security is closely intertwined with the networking choices made for the hybrid cloud. Traditional networking approaches for building a hybrid cloud try to kludge together the enterprise infrastructure with the public cloud. Consequently this approach requires risky, deep "surgery" including changes to firewalls, subnets...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device exp...
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using ...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series dat...