Click here to close now.

SYS-CON MEDIA Authors: David Sprott, Liz McMillan, tru welu, Blue Box Blog, Kevin Jackson

News Feed Item

Metal Oxide TFT Backplanes for Displays 2013-2018: Analysis, Trends, Markets

NEW YORK, Dec. 24, 2012 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

Metal Oxide TFT Backplanes for Displays 2013-2018: Analysis, Trends, Markets
http://www.reportlinker.com/p01057657/Metal-Oxide-TFT-Backplanes-for-Displays-2013-2018-Analysis-Trends-Markets.html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Electronic_Component_and_Semiconductor

There are many new frontiers in the display industry
Several major trends have been driving technological innovation in the display industry since its early days. These trends include image quality, screen size, portability and form factor. While these trends still remain strong undercurrents, new drivers are being introduced that will play a more prominent role in shaping the industry.

These new drivers will open up new frontiers, both on the technology and the market side. Indeed, they enable displays to both expand their existing markets and to diversify into new spaces. These major drivers that are set to change the display landscape include product differentiation, flexibility, 3D, transparency, system-on-panel, power savings, interconnectivity and screen size, and new front plane
technologies and more.

Major trends in the industry are changing the backplane functional requirements
Critically, these new trends can only be sustained so long as the underlying technology can deliver the required performance demands. This is critical because the new functional needs will stretch many existing solutions beyond their performance limits, suggesting that alternative solutions will be required. One vital piece of technology that largely sets the limits of display industry is the backplane technology. The backplane is responsible for turning the individual pixels ON and OFF. It is composed of thin film transistors, which act as the switches.

The over-arching trends in the industry are also changing the backplane requirements on several fronts. Product differentiation is resulting in multiplicity of lighting/display technologies, with each demanding a different power output and refresh rate from the backplane. Flexibility is opening up room for a new value chain consisting of new material systems. This is because many existing solutions are failing the flexibility tests, but what is the realistic market opportunity for flexible displays and when?

3D and ultra-high resolution displays mandate higher refresh rates, stretching the switching speed requirements past the capability limits of today's dominant technologies, such as amorphous silicon (aSi) TFTs. System-on-panel thinking is requiring ever more processing power to be integrated onto the panel, and therefore the backplane. Reducing power consumption requires improvements in the entire lifecycle of the display, from reducing the thermal budget during the processing all the way to the more efficient energy use during operation. This will affect how thin film transistors are designed, made and operated.

There is no one size-fits-all-solution
Interestingly, there are already many different backplane technologies that are mature and available, or are fast emerging. These include amorphous silicon, nanocrystalline silicon, low-temperature poly-silicon, solution-processed or evaporated organic semiconductor and various metal oxide thin film transistor technologies. Add to this multiplicity of solutions a range of emerging nano-systems (e.g., various nanowires, graphene, carbon nanotubes) and you will find a decision-making nightmare.

This is because each thin film transistor technology offers a different set of characteristics, suitable for different needs. And yet none offers a one-size-fits-all-solution for all needs. This suggests that, at least initially, many different technologies will co-exist, each rising to satisfy a fragment of the emerging spectrum of needs and thus each occupying a different niche. In addition, some of these options are further advanced than others while others hold great promise. Yet bringing it to market will take time and there are unforeseen technical issues to contend with.

This report makes sense of this changing, fragmented space
This report analyzes major drivers that are shaping the display industry. The major trends examined in detail include product differentiation, size and scaling, power savings, prolonged lifetime, 3D, mechanical flexibility, rimless designs, etc.

The report will then assess how these trends create new functional needs on the technology side. It provides an in-depth review of existing and emerging thin film transistor solutions and critically assesses the pros and cons of each. The technologies covered include various forms of silicon thin film transistors (amorphous, nanostructure and polycrystalline), organic semiconductors, various nanostructured semiconductors and metal oxides.



In terms of metal oxides, it assesses the different material systems available (IGZO, HIZO, IZO, ZNO, TZO, ZnO, etc) and critically assesses the merits of each. In doing so, it outlines and discusses the leading research frontiers in metal oxides science and engineering, including stability and persistent photoconductivity, processing window, p-doping, etc. The report also discusses various requirements of dielectrics for emerging displays and explores the material options for use as dielectrics on wide-bandgap metal-oxide semiconductors.



The report links material properties of all thin film transistor technologies to device figures-of-merit, including mobility, sub-threshold voltage, threshold voltage, stability, contact resistance, etc. These figures-of-merit are then connected to attributes of backplanes and thereby to the emerging functional needs of the display industry as a whole.



Linking the mega trends with micro level technological details, we are able to map out how the fragmented display backplane technology will look going forward.



In our assessment, we also provide a detailed outline of activities in the OLED display segment, including
-An analysis of announced production capacity
-Number of units sold by manufacturer
-Which backplane technologies are used by which manufacturers
-A timeline of venture/partnerships activities taking place across the world in the OLED space.
-Product development cycle for oxide semiconductors



Who should buy this report?
- Major display manufacturers: This report helps major display manufacturers understand how the drivers and the functional needs of the industry are changing. This report will also help them see which technologies will win in which market segments, and why. It will enable them to ensure that they do not lose out when the landscape alters and when parts (or all) of their existing value chain become disrupted.



-Thin film transistor technology licensors and researchers: It will help them identify how the changing display industry will benefit from which thin film transistor technology; helps them pinpoint key research frontiers and questions and therefore design their research programmes; helps them identify target markets and players for licensing their IP assets; helps them know their competitors, etc



- Material suppliers to all thin film transistor technologies: It will help them understand which thin film transistors (and their associated material system) will win in which markets and why. It will help them devise their strategies by backing the right technologies in the right time frames and for the right markets.



- Equipment suppliers: It will help them understand which new technologies will be required and why. As a result, it will help them see which new equipment systems will be required and why. It helps them therefore plan ahead and form the right partnerships or relationships.



- Circuit designers: It will help them see how oxide thin film transistors require new compensation techniques, why and for which market segments (this determines the required performance specification). This effectively highlights a new area of circuit design for companies.



Analyst access from IDTechEx
All report purchases include includes up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.




1. EXECUTIVE SUMMARY
1.1. A changing landscape
1.2. The backplane technology must be able to sustain the growth
1.3. Where do oxides sit in the emerging display landscape?
1.4. Development cycle and product pipeline for various display applications using oxide TFTs
1.5. OLED development timeline
1.6. How could the value chain look?
2. METAL OXIDE SEMICONDUCTORS
2.1. Zinc Oxide is the n-type oxide of choice
2.2. Why amorphous oxides give both high mobility and high spatial uniformity?
2.3. Multi-component oxides are leading the way
2.4. Why go multi-component?
2.5. Multi-component oxides give leverage in device design and manufacture
2.6. p-doping and complementary logic are often not possible
2.7. Some p-type oxide semiconductors are emerging
2.8. Transparent Electronics?
2.9. Transparency is not as good as advertised- why?
2.10. Photocurrent persists for long times, even in the dark
2.11. Manufacture
2.11.1. Sputtering
2.11.2. Printing
2.12. Target Markets
3. METAL OXIDE DIELECTRICS
3.1. Dielectric requirements for transistors
3.2. The dielectric material set- assessing suitability for traditional and metal-oxide electronics
3.3. Trade-off between bandgap and dielectric constant
3.4. Dielectrics- the wide bandgap limits the choice of dielectrics- AlOx and SiOx are promising
3.5. Which dielectric material gives highest stability in ZnO-based electronics?
3.6. Hybrid structures for metal oxides
3.7. Dielectric purity is critical for metal oxides
3.8. Passivation is critical in transistors but not straightforward
3.9. Metal oxide dielectrics are used to encapsulate moisture-sensitive OPVs and OLEDs devices
3.10. Manufacturing techniques
3.10.1. Explaining different techniques
3.10.2. Comparing Manufacturing Techniques
4. METAL OXIDE TRANSPARENT CONDUCTORS
4.1. Material set
4.2. Thin Film Transparent Conductors
4.3. Applications for Thin Film Transparent Conductors
4.4. Non-Thin Film Transparent Conductors
4.5. Why is ITO replacement being targeted?
4.5.1. Cost
4.5.2. Supply concern
4.5.3. Mechanical Flexibility
4.6. Will ITO alternatives deliver value? How and where
5. TRENDS IN THE BACKPLANE TECHNOLOGY
5.1. Active vs. Passive Matrix
5.2. Display Technologies
5.3. LCD displays vs OLED displays
5.4. TFT Technology
5.4.1. Basic TFT configurations
5.4.2. TFT Figures of Merit
5.4.3. TFT Technologies
6. TRENDS SHAPING THE DISPLAY INDUSTRY GOING FORWARD
6.1. 3D
6.2. Size and Scale
6.3. Flexibility
6.4. Product differentiation
6.5. Power consumption
6.6. Lifetime and consumer behaviour
6.7. Transparency
6.8. Rimless displays
6.9. Increasing processing power
7. MARKET ANALYSIS
7.1. How oxides deliver value across the existing market driver?
7.2. Which backplane technology occupies which market position in the emerging landscape?
7.3. Product development timeline using oxide thin film transistors
7.4. Joint venture, partnership and collaboration in the OLED space- a timeline
7.5. OLED display products are rapidly multiplying
7.6. OLED- a rapidly growing market
7.7. Opportunities for oxides in the OLED display industry- Data
7.8. Will oxides also be used in the LCD industry?
7.9. Sharp and HTC announces a IGZO product
7.10. Value Chain Mapping
8. COMPANY PROFILES
8.1. Technology Licensors
8.1.1. Amorphyx
8.1.2. AUO
8.1.3. Canon Kabushiki Kaisha
8.1.4. Cbrite
8.1.5. DuPont
8.1.6. Eastman Kodak
8.1.7. Fujifilm Corporation
8.1.8. Hewlett Packard
8.1.9. JX Nippon Mining
8.1.10. LG
8.1.11. Samsung Institute of Advanced Technology
8.1.12. Semiconductor Energy Laboratory
8.1.13. Sony
8.1.14. Tokyo Institute of Technology
8.1.15. University of Oregon
8.2. Circuits/Drivers
8.2.1. Dialog Semiconductors
8.2.2. IGNIS Innovation
8.2.3. Lucid Display Technology
8.2.4. Magnachip Semiconductor Ltd
8.3. Manufacturers
8.3.1. AUO
8.3.2. BOE Display
8.3.3. Chimei Innolux
8.3.4. Japan Display Inc
8.3.5. LG
8.3.6. Panasonic
8.3.7. Prime View International
8.3.8. Samsung Electronics
8.3.9. Sharp
8.4. Equipment Providers
8.4.1. AimCore
8.4.2. AJA International, Inc
8.4.3. Applied Materials
8.4.4. Angstrom Engineering
8.4.5. Cambridge Nanotech
8.4.6. ThinFilms Inc
8.4.7. Vacuum Process Technology
8.4.8. Veeco Instruments
8.5. Sputtering Targets Providers
8.5.1. Hitachi Metals
8.5.2. Idemitsu Kosan
8.5.3. JX Nippon Mining & Metals Corporation
8.5.4. Samsung Corning Precision Glass
8.5.5. ULVAC Corporation
APPENDIX: IDTECHEX PUBLICATIONS AND CONSULTANCY



To order this report:
Electronic_Component_and_Semiconductor Industry:
Metal Oxide TFT Backplanes for Displays 2013-2018: Analysis, Trends, Markets

__________________________
Contact Nicolas: [email protected]
US: (805)-652-2626
Intl: +1 805-652-2626

SOURCE Reportlinker

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
In this scenarios approach Joe Thykattil, Technology Architect & Sales at TimeWarner / Navisite, presented examples that will allow business-savvy professionals to make informed decisions based on a sound business model. This model covered the technology options in detail as well as a financial analysis. The TCO (Total Cost of Ownership) and ROI (Return on Investment) demonstrated how to start, develop and formulate a business case that will allow both small and large scale projects to achieve...
The move to the cloud brings a number of new security challenges, but the application remains your last line of defense. In his session at 15th Cloud Expo, Arthur Hicken, Evangelist at Parasoft, discussed how developers are extremely well-poised to perform tasks critical for securing the application – provided that certain key obstacles are overcome. Arthur Hicken has been involved in automating various practices at Parasoft for almost 20 years. He has worked on projects including database dev...
Building low-cost wearable devices can enhance the quality of our lives. In his session at Internet of @ThingsExpo, Sai Yamanoor, Embedded Software Engineer at Altschool, provided an example of putting together a small keychain within a $50 budget that educates the user about the air quality in their surroundings. He also provided examples such as building a wearable device that provides transit or recreational information. He then reviewed the resources available to build wearable devices at ...
There has been a lot of discussion recently in the DevOps space over whether there is a unique form of DevOps for large enterprises or is it just vendors looking to sell services and tools. In his session at DevOps Summit, Chris Riley, a technologist, discussed whether Enterprise DevOps is a unique species or not. What makes DevOps adoption in the enterprise unique or what doesn’t? Unique or not, what does this mean for adopting DevOps in enterprise size organizations? He also explored differe...
The emergence of cloud computing and Big Data warrants a greater role for the PMO to successfully manage enterprise transformation driven by these powerful trends. As the adoption of cloud-based services continues to grow, a governance model is needed to orchestrate enterprise cloud implementations and harness the power of Big Data analytics. In his session at Cloud Expo, Mahesh Singh, President of BigData, Inc., discussed how the Enterprise PMO takes center stage not only in developing the app...
Cloud Foundry open Platform as a Service makes it easy to operate, scale and deploy application for your dedicated cloud environments. It enables developers and operators to be significantly more agile, writing great applications and deliver them in days instead of months. Cloud Foundry takes care of all the infrastructure and network plumbing that you need to build, run and operate your applications and can do this while patching and updating systems and services without any downtime.
Are your Big Data initiatives resulting in Big Impact or Big Mess? In her session at Big Data Expo, Penelope Everall Gordon, Emerging Technology Strategist at 1Plug Corporation, shared her successes in improving Big Decision outcomes by building stories compelling to the target audience – and her failures when she lost sight of the plotline, distracted by the glitter of technology and the lure of buried insights. The cast of characters includes the agency head [city official? elected official?...
In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect at GE, and Ibrahim Gokcen, who leads GE's advanced IoT analytics, focused on the Internet of Things / Industrial Internet and how to make it operational for business end-users. Learn about the challenges posed by machine and sensor data and how to marry it with enterprise data. They also discussed the tips and tricks to provide the Industrial Internet as an end-user consumable service using Big Data Analytics and Industrial C...
Storage administrators find themselves walking a line between meeting employees’ demands to use public cloud storage services, and their organizations’ need to store information on-premises for security, performance, cost and compliance reasons. However, as file sharing protocols like CIFS and NFS continue to lose their relevance, simply relying only on a NAS-based environment creates inefficiencies that hurt productivity and the bottom line. IT wants to implement cloud storage it can purchase a...
SYS-CON Events announced today that BMC will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. BMC delivers software solutions that help IT transform digital enterprises for the ultimate competitive business advantage. BMC has worked with thousands of leading companies to create and deliver powerful IT management services. From mainframe to cloud to mobile, BMC pairs high-speed digital innovation with robust...
After a couple of false starts, cloud-based desktop solutions are picking up steam, driven by trends such as BYOD and pervasive high-speed connectivity. In his session at 15th Cloud Expo, Seth Bostock, CEO of IndependenceIT, cut through the hype and the acronyms, and discussed the emergence of full-featured cloud workspaces that do for the desktop what cloud infrastructure did for the server. He also discussed VDI vs DaaS, implementation strategies and evaluation criteria.
We certainly live in interesting technological times. And no more interesting than the current competing IoT standards for connectivity. Various standards bodies, approaches, and ecosystems are vying for mindshare and positioning for a competitive edge. It is clear that when the dust settles, we will have new protocols, evolved protocols, that will change the way we interact with devices and infrastructure. We will also have evolved web protocols, like HTTP/2, that will be changing the very core...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happe...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective ...
Collecting data in the field and configuring multitudes of unique devices is a time-consuming, labor-intensive process that can stretch IT resources. Horan & Bird [H&B], Australia’s fifth-largest Solar Panel Installer, wanted to automate sensor data collection and monitoring from its solar panels and integrate the data with its business and marketing systems. After data was collected and structured, two major areas needed to be addressed: improving developer workflows and extending access to a b...