SYS-CON MEDIA Authors: Adine Deford, Cynthia Dunlop, Harry Trott, Xenia von Wedel, Peter Silva

News Feed Item

Batteries & Supercapacitors in Consumer Electronics 2013-2023: Forecasts, Opportunities, Innovation

NEW YORK, April 9, 2014 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

Batteries & Supercapacitors in Consumer Electronics 2013-2023: Forecasts, Opportunities, Innovation
http://www.reportlinker.com/p01012358/Batteries--Supercapacitors-in-Consumer-Electronics-2013-2023-Forecasts-Opportunities-Innovation.html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Battery

Mobile phone and Laptop sales have increased consistently by double digits in the last years, now with the presence of Smartphones and Tablet PCs this trend will boost in the following years. This new age of communications, information and portability would have not been possible without energy storage solutions to power these portable devices.

Lithium batteries are currently the dominant technology in the energy storage space; this is because of their superior energy density characteristics. The consumer electronics industry has pushed their production to the scale of billions, and consequently through economies of scale optimized its supply chain and reduced their price. However lithium battery technology capabilities are being challenged by the modern multifunctional portable devices which are increasingly requiring higher performance in terms of power density. Whilst current research and development pathways aim for the emergence of a new generation of high energy density technologies, alternative energy storage technologies, are challenging the dominance of lithium batteries. This is the case with supercapacitors, which are an emerging energy storage technology whose characteristics make them strong candidates for satisfying those specific functions where lithium batteries underperform.

On the other hand, the developments of electronics and material science is allowing for new developments in the energy storage field. Now we can build, or better said, print, thin film batteries on different surfaces allowing for new energy storage solutions which coupled with energy harvesting (collecting energy from the environment) and radio frequency technologies unlock many potential applications as traceability in consumer product supply chains and internet remote localization without the need of big devices, just to mention some examples.

This report leads you from the basic concepts to understand the technologies in the energy storage industry including the advantages and limitations of different technologies. This is followed by a comprehensive section of the supercapacitor technology explaining where they fit in the energy storage industry and their potential applications. Finally it introduces the emerging and future technologies in the energy storage space: Thin Film and Flexible Batteries. We present both for batteries and supercapacitors their current research and development paths leading to improvements. Through these sections we highlight the work of the companies involved in this industry. Expanding from previous editions we present potential cost reduction paths for lithium batteries, drivers of the consumer electronic industry, the potential role of super capacitors and innovative technologies and their niche markets. In addition this report presents IDTechEx's comprehensive study of companies in the lithium battery industry: 138 manufacturers of lithium-based rechargeable batteries, including their country, cathode and anode chemistry, electrolyte morphology case type and application priorities. We present a 10 year forecast on lithium batteries, supercapacitors, RFID and wireless sensors applications.

Energy Storage for Smart and Portable Electronic Devices is currently the biggest and fastest growing battery market. The Consumer Electronics segment is one of the fastest changing markets. Portable electronic devices are becoming increasingly multifunctional and this trend is currently requiring better performance from batteries. This report explains the drivers in this changing segment, what are these changes demanding from battery technologies and what are the research and development paths to improve battery technologies accordingly. We present a new entrant technology in the energy storage industry: supercapacitors, which compared with batteries, can deliver high power instantly and do not rely on chemical processes to store energy so they have longer useful lives. We present what is the role of this new technology as an alternative to improve battery performance and satisfy the changing demands of the consumer electronics market. Indeed supercapacitors as an emerging energy storage alternative are challenging the predominance of batteries and complementing their functions. By the other hand thin film batteries open a new category in energy solutions for specific niche markets which can potentially launch them to mass production. RFID and Wireless Sensors are two examples. Emerging battery manufacturing technologies as spray battery painting and new technologies as transparent batteries hold the promise of opening new possibilities in portable device design and energy storage applications.

This report has a global coverage and presents global forecasts and players in the sector.

In this report we provide a 10 year forecast (2013-2023) for the following segments of the energy storage for portable devices and related markets:
- Primary Batteries
- Secondary (or Rechargeable Batteries) (Lithium Batteries)
- Supercapacitors for Smart and Portable Devices
- RFID and Wireless Sensors applications

In addition this report presents IDTechEx's comprehensive study of companies in the lithium battery industry: 138 manufacturers of lithium-based rechargeable batteries, including their country, cathode and anode chemistry, electrolyte morphology case type and application priorities.

Some of the insights you will find in this report:

Following the trend of smartphones, portable devices are becoming increasingly multifunctional, in this report you will find what this trend will be demanding from the energy storage industry.
What trends are behind the primary consumer battery market contraction?
How supercapacitors will step in the consumer electronics industry? What will be the value of this market in 2023?
What are the pathways for cost reduction and increased performance for Lithium Batteries?
1. EXECUTIVE SUMMARY AND CONCLUSIONS
1.1. Objective of this report
1.2. Batteries, Supercapacitors and Alternative Energy Storage for Smart and Portable Electronic devices in context
1.3. IDTechEx forecasts
1.4. Total global battery market
1.5. Rechargeable batteries by use
1.6. Cost Drivers and Cost Structure of Lithium Ion Batteries
1.6.1. Cost Structure of Lithium Ion batteries
1.6.2. Paths for further cost reductions on Lithium-ion Batteries
1.7. 138 Lithium-based Rechargeable Battery Manufacturers - Chemistry, Strategy, Success, Potential
1.8. Power requirements of small devices

1.8.1. Power Demand and Specific Power
1.8.2. Capacity, Energy Density and Specific Power
1.9. The Consumer Electronics game is changing: a role for supercapacitors?
1.9.1. Smartphones and Tablet PCs are changing the game of consumer electronics
1.9.2. An analysis of power consumption in Smartphones
1.9.3. A role for supercapacitors in the consumer electronics market
1.10. Alternative directions
1.10.1. Transparent Smartphone
1.10.2. Spray Painted Batteries
1.10.3. Flexible Smartphone
1.10.4. New market drivers
1.11. Conclusions
1.12. Wearable Electronics Can Favour Supercapacitors but the big New Market is for Li-ion
2. INTRODUCTION
2.1. Small electrical and electronic devices
2.2. Popular chemistry and shape
2.3. What is a battery?
2.3.1. Battery definition
2.3.2. Analogy to a container of liquid
2.3.3. Construction of a battery
2.3.4. Many shapes of battery
2.3.5. Single use vs rechargeable batteries
2.3.6. Challenges with batteries in small devices

.4. What is a capacitor?
2.4.1. Capacitor definition
2.4.2. Analogy to a spring
2.4.3. Capacitor construction
2.5. Limitations of energy storage devices
2.5.1. The electronic device and its immediate support
2.5.2. Safety
2.5.3. Improvement in performance taking place
2.6. Standards
3. RECHARGEABLE BATTERIES
3.1. Technology successes and failures
3.2. Lithium ion
3.2.1. Formats of the leading forms of battery
3.2.2. Cost Drivers of Lithium Ion Batteries.
3.2.3. Materials Cost Drivers
3.2.4. Improvements in specific energy and/or energy density
3.2.5. Anode New Materials Development
3.2.6. Cathode New Materials Improvement
3.2.7. Improvements in Power
3.2.8. Improvements in safety and reliability
3.2.9. The Lithium Batteries of the Future
3.2.10. Materials and economies of scale
3.2.11. Manufacturing cost drivers
4. TRENDS IN SMART AND PORTABLE DEVICES

4.1. Evolution of Markets for Lithium Ion Batteries
4.2. Forecast for Smart and Portable Devices
4.3. Trends in Smart and Portable Electronic Devices
4.3.1. Increasing Multifunctionality: From Simon to IPhone.
4.3.2. Is the race for the thinnest mobile in the market over?
4.3.3. The iPad
4.3.4. IPhone and Nokia want a piece of Cannon and Nikkon's market- Can Supercapacitors play a role on this strategy?
4.3.5. Power Efficiency due to Multiple Core Processors in Smartphones
4.4. Supercapacitors as a solution for peak power requirements in smart and portable devices
4.4.1. An analysis of power consumption in Smartphones
4.4.2. Digital Cameras Flash - why today's digital cameras need a more powerful flash
4.4.3. Laptop Solid State Drives use Supercapacitors
5. SINGLE USE BATTERIES AND ALTERNATIVE ENERGY STORAGE
5.1. Energy Storage for Wireless Sensors and RFID
5.1.1. Customised and AAA/AA Batteries
5.1.2. Planar Energy Devices
5.1.3. Primary battery life extension
5.1.4. Always Ready Smart Nano Battery
5.1.5. Energy Storage of batteries in standard and laminar formats
5.1.6. Future options for higher energy density
5.1.7. Laminar Fuel Cells
5.1.8. Tadiran Batteries twenty year batteries
6. NEW SHAPES - LAMINAR AND FLEXIBLE BATTERIES
6.1. Laminar lithium batteries
6.2. Laminar printed manganese dioxide batteries
6.2.1. Printed battery construction

6.2.2. Printed battery production facilities
6.2.3. Applications of printed batteries
6.2.4. Printed battery specifications
6.3. Ultrathin battery from Front Edge Technology
6.4. Nanotube flexible battery
6.5. Transparent battery - NEC and Waseda University
6.6. Battery Assembly through Spray Painting
6.7. Other emerging needs for laminar batteries - apparel and medical
6.7.1. Electronic apparel
6.7.2. Wireless body area network
6.8. Biobatteries do their own harvesting
6.9. Battery that incorporates energy harvesting - FlexEl
6.10. Microbatteries built with viruses
6.11. Biomimetic energy storage system
6.12. Magnetic spin battery
7. SUPERCAPACITORS
7.1. Example of capacitor storage application - e-labels
7.2. Many shapes of capacitor
7.3. Capacitors for small devices

7.4. What does a supercapacitor for small devices look like?
7.5. Supercapacitors = Ultracapacitors
7.6. Where supercapacitors fit in
7.7. Advantages and disadvantages
7.8. How it all began
7.9. Applications
7.10. Uses in small devices.
7.11. Relevance to energy harvesting
7.11.1. Perpetuum harvester
7.11.2. Human power to recharge portable electronics
7.11.3. Use in nanoelectronics
7.12. Can supercapacitors replace capacitors?
7.13. Can supercapacitors replace batteries?
7.14. Electric vehicle demonstrations and adoption
7.15. How an EDLC supercapacitor works
7.15.1. Basic geometry
7.15.2. Properties of EDL
7.15.3. Charging
7.15.4. Discharging and cycling
7.15.5. Energy density
7.15.6. Achieving higher voltages
7.16. Improvements coming along
7.16.1. Better electrodes
7.16.2. Better electrolytes
7.16.3. Better carbon technologies
7.16.4. Carbon nanotubes and Graphene
7.16.5. Carbon aerogel

7.16.6. Solid activated carbon
7.16.7. Carbon derived carbon
7.16.8. Fast charging is achieved
7.17. Microscopic supercapacitors become possible
7.17.1. Graphene
7.18. Flexible, paper and transparent supercapacitors
7.18.1. University of Minnesota
7.18.2. University of Southern California
7.18.3. Rensselaer Polytechnic Institute USA
7.19. Woven wearable supercapacitors
7.20. National University of Singapore: a competitor for supercapacitors?
7.21. Handling surge power in electronics
7.22. Wireless systems and Burst-Mode Communications
7.23. Energy harvesting
7.23.1. Bicycles and wristwatches
7.23.2. Polyacenes or polypyrrole
7.23.3. New shapes
7.23.4. Human power to recharge portable electronics
7.24. Using a supercapacitor to manage your power
7.24.1. A glimpse at the new magic

7.25. Supercabatteries or bacitors
8. ORGANISATION PROFILES
8.1. Blue Spark Technologies USA
8.2. Cap-XX Australia
8.3. Celxpert Energy Corp. Taiwan Head Quarter
8.4. Cymbet USA
8.5. Permanent Power for Wireless Sensors - White Paper from Cymbet
8.6. DYNAPACK
8.7. Duracell USA
8.8. Enfucell Finland
8.9. Excellatron USA
8.10. Front Edge Technology USA
8.11. Frontier Carbon Corporation Japan
8.12. Harvard University USA
8.13. Hitachi Maxell
8.14. Holst Centre Netherlands
8.15. Infinite Power Solutions USA
8.16. Institute of Bioengineering and Nanotechnology Singapore
8.17. Lebônê Solutions South Africa
8.18. Lifeline Energy

8.19. LG Chem
8.20. Lilliputian Systems
8.21. Massachusetts Institute of Technology USA
8.22. Maxwell Technologies Inc., USA
8.23. Murata Japan
8.24. National Renewable Energy Laboratory USA
8.25. NEC Japan
8.26. Nippon Chemi-Con Japan
8.27. Oak Ridge National Laboratory USA
8.28. Panasonic Japan
8.29. Paper Battery Company USA
8.30. Planar Energy Devices USA
8.31. Renata Batteries
8.32. ReVolt Technologies Ltd
8.33. Sandia National Laboratory USA
8.34. SIMPLO TECHNOLOGY CO. LTD
8.35. Solicore USA
8.36. Sony Japan
8.37. Technical University of Berlin Germany
8.38. University of California Los Angeles USA

8.39. University of Michigan USA
8.40. Tadiran Batteries
8.41. University of Sheffield UK
8.42. University of Wollongong Australia
8.43. Waseda University
9. MARKETS AND FORECASTS
9.1. Market for energy storage for smart and portable electronic devices
9.1.1. IDTechEx forecasts
9.2. Total global battery market
9.3. Batteries for Active RFID and Wireless Sensors Networks
9.3.2. Batteries for gift cards
9.3.3. Batteries for car keys
9.4. Printed and thin film batteries 2013-2023
9.5. Forecast assumptions and Reality Checks
9.5.1. Rechargeable Energy Storage for Smart and Portable electronic devices.
9.5.2. Global Battery Outlook
9.5.3. Supercapacitors
10. GLOSSARY

To order this report: Batteries & Supercapacitors in Consumer Electronics 2013-2023: Forecasts, Opportunities, Innovation
http://www.reportlinker.com/p01012358/Batteries--Supercapacitors-in-Consumer-Electronics-2013-2023-Forecasts-Opportunities-Innovation.html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Battery

__________________________
Contact Clare: [email protected]
US: (339)-368-6001
Intl: +1 339-368-6001

SOURCE Reportlinker

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
"We help companies that are using a lot of Software as a Service. We help companies manage and gain visibility into what people are using inside the company and decide to secure them or use standards to lock down or to embrace the adoption of SaaS inside the company," explained Scott Kriz, Co-founder and CEO of Bitium, in this SYS-CON.tv interview at 15th Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
15th Cloud Expo, which took place Nov. 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA, expanded the conference content of @ThingsExpo, Big Data Expo, and DevOps Summit to include two developer events. IBM held a Bluemix Developer Playground on November 5 and ElasticBox held a Hackathon on November 6. Both events took place on the expo floor. The Bluemix Developer Playground, for developers of all levels, highlighted the ease of use of Bluemix, its services and functionalit...
Some developers believe that monitoring is a function of the operations team. Some operations teams firmly believe that monitoring the systems they maintain is sufficient to run the business successfully. Most of them are wrong. The complexity of today's applications have gone far and beyond the capabilities of "traditional" system-level monitoring tools and approaches and requires much broader knowledge of business and applications as a whole. The goal of DevOps is to connect all aspects of app...
The 4th International DevOps Summit, co-located with16th International Cloud Expo – being held June 9-11, 2015, at the Javits Center in New York City, NY – announces that its Call for Papers is now open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the world's large...
SAP is delivering break-through innovation combined with fantastic user experience powered by the market-leading in-memory technology, SAP HANA. In his General Session at 15th Cloud Expo, Thorsten Leiduck, VP ISVs & Digital Commerce, SAP, discussed how SAP and partners provide cloud and hybrid cloud solutions as well as real-time Big Data offerings that help companies of all sizes and industries run better. SAP launched an application challenge to award the most innovative SAP HANA and SAP HANA...
Want to enable self-service provisioning of application environments in minutes that mirror production? Can you automatically provide rich data with code-level detail back to the developers when issues occur in production? In his session at DevOps Summit, David Tesar, Microsoft Technical Evangelist on Microsoft Azure and DevOps, will discuss how to accomplish this and more utilizing technologies such as Microsoft Azure, Visual Studio online, and Application Insights in this demo-heavy session.
When an enterprise builds a hybrid IaaS cloud connecting its data center to one or more public clouds, security is often a major topic along with the other challenges involved. Security is closely intertwined with the networking choices made for the hybrid cloud. Traditional networking approaches for building a hybrid cloud try to kludge together the enterprise infrastructure with the public cloud. Consequently this approach requires risky, deep "surgery" including changes to firewalls, subnets...
DevOps is all about agility. However, you don't want to be on a high-speed bus to nowhere. The right DevOps approach controls velocity with a tight feedback loop that not only consists of operational data but also incorporates business context. With a business context in the decision making, the right business priorities are incorporated, which results in a higher value creation. In his session at DevOps Summit, Todd Rader, Solutions Architect at AppDynamics, discussed key monitoring techniques...
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water,...
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, a...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happe...
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series dat...
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and asse...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!