Click here to close now.

SYS-CON MEDIA Authors: Liz McMillan, Pat Romanski, Elizabeth White, tru welu, Blue Box Blog

Related Topics: SDN Journal, Java IoT, Linux Containers, @ContainersExpo Blog, CloudExpo® Blog, Cloud Security

SDN Journal: Blog Post

What SDN Can Do for Multicast Topologies

IP Multicast is one of those technologies that most everyone loves to hate

IP Multicast is one of those technologies that most everyone loves to hate. It’s almost the perfect example of how complicated we have made networking. Getting IP Multicast to run depends on several protocols that are all somewhat intertwined or dependent on each, their relationship sometimes explicit, sometimes implicit.

Even trying to describe the basic operation is complicated.

When an application or service provides information using IP multicast, it simply starts sending it onto a specific multicast group. The multicast router for the subnet of the sender sees the incoming multicast packet and will initially have no forwarding information for that stream in its forwarding hardware. The packet is passed onto the CPU of that router, which will encapsulate this packet and send it towards a special multicast router designated the Rendez-vous Point (RP). When the RP has installed the multicast routes for this group, it will tell the multicast router on the sender’s segment to stop sending. When it does, this router installs its own multicast routes for the source tree (the tree specific to this sender) and the shared tree (the one towards the RP) without any outgoing interfaces, and the traffic is dropped at this first router. But, the network (well at least the part between the sender and the RP) is now aware of this multicast stream. And who is sending.

Now when we want to join this IP Multicast group, the first action is send an IGMP join out on the subnet you are attached to. The IP Multicast router that serves this subnet sees the join and determines where RP can be found. It takes the client join, and sends it towards the RP, using the unicast routing table as its guide. Every multicast router along the way registers that there is a listener on the interface this join came in on and passes it along towards the IP. All along this path, the unicast routing entry for the RP is used to create the tree towards the listener.

Once received by the RP, the shared tree and the source tree towards the sender have been joined. We have an end to end path between sender and receiver, with the RP in the middle of it all. All that is left is to send a join from the RP towards the router on the sender’s subnet to essentially tell it to start passing the actual multicast along the path towards the RP (the source tree), where the RP will then push it out onto the shared tree towards the destination. Voila, it’s as simple as that.

But wait, we are not done. Once the packets start to flow from source to destination, the multicast router closest to the destination will send another join message for this group, but this time towards the sender. It is only now that it can do this because those first few data packets actually indicate who the sender is. That join is passed router to router to router towards the router on the sender’s subnet, and once arrived, that router will now also start sending the multicast data along that path towards the receiver. The receiving subnet router sees that stream appearing and will now send a prune message onto the shared tree towards the RP, indicating it no longer needs the multicast stream through the RP.

If you are not familiar with IP Multicast and after reading the above are not confused, congratulations, your brain is very well wired for complex networking.

If you step away from how IGMP and PIM implement this today as above, the most fundamental of IP multicast topologies is that you need to build a forwarding tree that is rooted in the source, with the destinations as its leaves. At each intermediate node in the tree, the packets are replicated to its branches, therefore creating the least amount of duplication. And by using a tree, it is loop free, packets won’t swirl around the network bringing it to its knees.

The challenging part though is that the tree is based on the unicast forwarding topology. From a leaf on this tree towards the sender, each step is identical to how a unicast IP packet would be forwarded. The forwarding topologies are connected and dependent on each other. IP Multicast is built on top of a unicast routed infrastructure, and unicast routing changes can have dramatic impacts to the multicast forwarding topologies.

I mentioned here before that I once spent a wonderful 2 weeks in Delhi working on a network where surveillance cameras created an aggregate 8Gbit/sec worth of multicast data, with a requirement that any unicast change would have limited impact to these streams. Believe me, it is extremely hard to engineer and tune, and we had the luxury of hijacking a really large network night after night to simulate failures.

SDN based architectures have the opportunity to change all this. Multicast forwarding was designed the way it was designed to work on arbitrary network topologies, with random senders and receivers coming and going. It builds trees on the fly and on demand. For many networks, topologies are not arbitrary, and those applications that consume/produce lots of multicast do not have randomly placed senders and receivers that come and go as they please.  Many of them are well known or placed in fairly static and fixed topologies.

A controller with a global view of the network can create multicast topologies ahead of time. It knows all possible replication points and can create distribution trees among them. It can create different distribution trees for different multicast groups. It can create them independent of the unicast forwarding. It can calculate backup topologies in case portions of the tree fail. And it can do all of that guaranteeing there are no loops and optimal replication. When applications indicate their participation in specific multicast streams as senders or listeners to this controller, it can optimize very specifically based on those participants. The possibilities are endless.

We had a customer visit us yesterday that has very significant multicast needs and we walked him through some of these possibilities. He left with a huge smile on his face. And that smile on his face was not because he really liked what we built (even though he did), but it was because we showed him that if you remove legacy network thinking and constraints, networking can yet again be extremely exciting and creates solutions that he did not think were possible, in a fairly simple and straightforward way. And that, in turn, is truly exciting to us.

The post What SDN can do for Multicast Topologies appeared first on Plexxi.

Read the original blog entry...

More Stories By Marten Terpstra

Marten Terpstra is a Product Management Director at Plexxi Inc. Marten has extensive knowledge of the architecture, design, deployment and management of enterprise and carrier networks.

Latest Stories
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In this session, James Kirkland, Red Hat's Chief Architect for the ...
While there are hundreds of public and private cloud hosting providers to choose from, not all clouds are created equal. If you’re seeking to host enterprise-level mission-critical applications, where Cloud Security is a primary concern, WHOA.com is setting new standards for cloud hosting, and has established itself as a major contender in the marketplace. We are constantly seeking ways to innovate and leverage state-of-the-art technologies. In his session at 16th Cloud Expo, Mike Rivera, Seni...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series dat...
Cloud Expo, Inc. has announced today that Andi Mann returns to DevOps Summit 2015 as Conference Chair. The 4th International DevOps Summit will take place on June 9-11, 2015, at the Javits Center in New York City. "DevOps is set to be one of the most profound disruptions to hit IT in decades," said Andi Mann. "It is a natural extension of cloud computing, and I have seen both firsthand and in independent research the fantastic results DevOps delivers. So I am excited to help the great team at ...
EMC Corporation on Tuesday announced it has entered into a definitive agreement to acquire privately held Virtustream. When the transaction closes, Virtustream will form EMC’s new managed cloud services business. The acquisition represents a transformational element of EMC’s strategy to help customers move all applications to cloud-based IT environments. With the addition of Virtustream, EMC completes the industry’s most comprehensive hybrid cloud portfolio to support all applications, all workl...
We’re entering a new era of computing technology that many are calling the Internet of Things (IoT). Machine to machine, machine to infrastructure, machine to environment, the Internet of Everything, the Internet of Intelligent Things, intelligent systems – call it what you want, but it’s happening, and its potential is huge. IoT is comprised of smart machines interacting and communicating with other machines, objects, environments and infrastructures. As a result, huge volumes of data are bein...
Enterprises are fast realizing the importance of integrating SaaS/Cloud applications, API and on-premises data and processes, to unleash hidden value. This webinar explores how managers can use a Microservice-centric approach to aggressively tackle the unexpected new integration challenges posed by proliferation of cloud, mobile, social and big data projects. Industry analyst and SOA expert Jason Bloomberg will strip away the hype from microservices, and clearly identify their advantages and d...
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo, June 9-11, 2015, at the Javits Center in New York City. Learn what is going on, contribute to the discussions, and ensure that your enter...
SYS-CON Events announced today that MetraTech, now part of Ericsson, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Ericsson is the driving force behind the Networked Society- a world leader in communications infrastructure, software and services. Some 40% of the world’s mobile traffic runs through networks Ericsson has supplied, serving more than 2.5 billion subscribers.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will w...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using ...
Thanks to widespread Internet adoption and more than 10 billion connected devices around the world, companies became more excited than ever about the Internet of Things in 2014. Add in the hype around Google Glass and the Nest Thermostat, and nearly every business, including those from traditionally low-tech industries, wanted in. But despite the buzz, some very real business questions emerged – mainly, not if a device can be connected, or even when, but why? Why does connecting to the cloud cre...
SYS-CON Events announced today that O'Reilly Media has been named “Media Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York City, NY. O'Reilly Media spreads the knowledge of innovators through its books, online services, magazines, and conferences. Since 1978, O'Reilly Media has been a chronicler and catalyst of cutting-edge development, homing in on the technology trends that really matter and spurring their adoption...
SYS-CON Events announced today that BMC will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. BMC delivers software solutions that help IT transform digital enterprises for the ultimate competitive business advantage. BMC has worked with thousands of leading companies to create and deliver powerful IT management services. From mainframe to cloud to mobile, BMC pairs high-speed digital innovation with robust...
Imagine a world where targeting, attribution, and analytics are just as intrinsic to the physical world as they currently are to display advertising. Advances in technologies and changes in consumer behavior have opened the door to a whole new category of personalized marketing experience based on direct interactions with products. The products themselves now have a voice. What will they say? Who will control it? And what does it take for brands to win in this new world? In his session at @Thi...