SYS-CON MEDIA Authors: Pat Romanski, Elizabeth White, Yeshim Deniz, Glenn Rossman, Cynthia Dunlop

News Feed Item

Onshore Wind Energy Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2014 - 2020

NEW YORK, Aug 13, 2014 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

Onshore Wind Energy Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2014 - 2020

http://www.reportlinker.com/p02294114/Onshore-Wind-Energy-Market---Global-Industry-Analysis-Size-Share-Growth-Trends-and-Forecast-2014---2020.html

Wind energy is a relatively mature method of generating renewable energy. It has garnered significant share in the global renewable energy market due to its relatively mature technology and low cost of generation vis-à-vis other renewable energy sources. The wind industry's rapid development in the past few years indicates its significant potential to create jobs, spur economic activity and reduce greenhouse gas emissions.

Onshore wind energy is a relatively old technology. It has emerged as one of the most developed renewable energy generation methods in use currently. Both project development experience and technology maturity for the onshore wind energy sector is relatively high. The market for wind turbine suppliers is consolidated in nature, with 10 major turbine suppliers accounting for nearly 75% of the annual installations in 2013. The high technology maturity component is one of the primary driving factors for wind energy. A large number of project developers exist in the market. These are duly supported by national government installation targets. This has helped boost investor confidence in the wind energy sector. The technology has achieved a certain degree of maturity; however, there is still ample scope for cost reduction through technological innovations and deployment of large multi-megawatt turbines.

This research is designed to estimate, analyze and forecast the market volume and revenue for the wind power generation market. It provides an in-depth analysis of the market size of wind power in terms of capacity (MW) and revenue (USD Billion). The baseline data for this report has been taken as 2013, while all the forecasts are carried out for the 2014 to 2020 period. Wind energy can be broadly segmented into offshore and onshore. However, this report focuses exclusively on the onshore market. The report analyzes the onshore wind energy sector in detail along with deep dive research that spans five regions and 36 countries. The market has been segmented based on geography into five regions: North America, Asia Pacific, Europe, the Middle East & Africa and South & Central America. About 36 countries across these five regions have been separately analyzed to obtain a better idea of the wind energy sector globally. The market has been forecasted using the unique bottom-up approach, where individual country forecasts were added up to provide regional and global market sizes. The report primarily focuses on wind turbine developers as they form an integral part of the wind value chain. Turbine cost projections and forecasts have been provided in the report and accounted for while calculating revenue figures. The company market share provided in the report focuses on the market share of wind turbine manufacturers with respect to turbine capacities supplied by them for 2013.

The market size for onshore wind power generation has been estimated by studying the possible future technology trends in the market. Detailed research of countries and region-specific wind associations has been undertaken to estimate and forecast the installed capacity and investments in the onshore wind energy sector. As part of the bottom-up approach adopted for forecasting purposes, a deep dive regulatory analysis was required. The regulatory framework for each of the 36 countries accounted for in the report was analyzed separately. This provided a clear indication regarding the general approach of the government towards wind energy and the overall investment sentiment in the country. Legislations specifying quotas for indigenous manufacturing and renewable energy purchase also provided a clear idea regarding the clustering of turbine developers in a region, which may be observed in the future.

The report includes Porter's five forces model and value chain analysis for the onshore wind energy sector. These have been included with respect to turbine manufacturers, developers and suppliers. Drivers, restraints and opportunities for the market have been broadly identified. Both drivers and restraints for the onshore wind energy market are subject to country or region-wise variations. On the global scale, only the most attractive drivers and pressing restraints have been included. The market attractiveness study has been conducted regionally. The study has been quantified using different factors that play a major role in determining the overall attractiveness of the market. With long-term power purchase agreements in place, project financing is not much of a hassle. The global onshore energy market has been segmented as below:

Onshore Wind Energy Market: Regional Analysis
North America
The U.S.
Canada
Mexico
Asia-Pacific
Australia
India
China
New Zealand
Japan
South Korea
Taiwan

Others
Europe
The U.K.
Denmark
Belgium
Germany
Finland
Sweden
Norway
Ireland
Portugal
Spain
The Netherlands
France
Italy
Poland

Austria
Ukraine
Turkey
Greece
Romania
Others
The Middle East & Africa
Iran
Morocco
Tunisia
Egypt
Others
South & Central America
Argentina
Brazil
Costa Rica
Others
Chapter 1 Preface
1.1 Report Description
1.2 Research Scope
1.3 Market Segmentation
1.4 Research Methodology

Chapter 2 Executive Summary

Chapter 3 Market Overview
3.1 Introduction
3.2 Value Chain Analysis
3.3 Market Drivers
3.3.1 Generation of electricity at grid parity levels increases adoption
3.3.2 Aggressive renewable energy capacity addition targets for wind energy established through legislations
3.3.3 Low risk of technology failure boosting investor confidence
3.4 Market Restraints
3.4.1 Low tolerance for noise coupled with visual impact of wind turbines resulting in project siting issues
3.5 Market Opportunities
3.5.1 Manufacturing of vital components for wind technology using alternative materials to derive cost savings
3.6 Porter's five forces analysis
3.6.1 Bargaining power of suppliers
3.6.2 Bargaining power of buyers
3.6.3 Threat from new entrants
3.6.4 Degree of competition

3.6.5 Threat from substitutes
3.7 Onshore Wind Energy: Plant Cost Analysis
3.7.1 Global Onshore Wind energy plant cost breakdown and forecast, by cost type, 2013 – 2020, (Million USD/MW)
3.7.1.1 Civil Works
3.7.1.2 Grid Connections
3.7.1.3 Planning and development
3.7.2 Global Onshore Wind energy turbine cost breakdown and forecast, by cost type, 2013 – 2020, (Million USD/MW)
3.7.2.1 Rotor Blades cost analysis
3.7.2.2 Generator Cost Analysis
3.7.2.3 Towers Cost Analysis

3.7.2.4 Gearbox Cost Analysis
3.7.2.5 Power Converter Cost Analysis
3.7.2.6 Transformers Cost Analysis
3.8 Market attractiveness analysis of the Onshore Wind Energy Market, by region, 2013
3.9 Company market share analysis : Onshore Wind Energy
3.9.1 Onshore Wind Energy, company market share analysis (MW), 2013

Chapter 4 Onshore Wind Energy Market: Regional Analysis
4.1 Onshore Wind Energy Market: Regional overview
4.1.1 Global onshore wind energy market, volume share by region, 2013 and 2020 (MW)
4.2 North America
4.2.1 North America onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.2.2 U.S.A
4.2.2.1 U.S.A onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.2.2.2 Regulatory Snapshot: U.S.A
4.2.3 Canada

4.2.3.1 Canada onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.2.3.2 Regulatory Snapshot: Canada
4.2.4 Mexico
4.2.4.1 Mexico onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.2.4.2 Regulatory Snapshot: Mexico
4.2.5 Turbine Analysis
4.2.5.1 North America Wind Turbine Distribution, By Turbine Class (%)
4.2.6 Planned Onshore Wind Energy Projects
4.3 Asia Pacific
4.3.1 Asia Pacific onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.3.2 Australia
4.3.2.1 Australia onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.3.2.2 Regulatory Snapshot: Australia
4.3.3 China
4.3.3.1 China onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.3.3.2 Regulatory Snapshot: China

4.3.4 India
4.3.4.1 India onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.3.4.2 Regulatory Snapshot: India
4.3.5 Japan
4.3.5.1 Japan onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.3.5.2 Regulatory Snapshot: Japan
4.3.6 New Zealand
4.3.6.1 New Zealand onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.3.6.2 Regulatory Snapshot: New Zealand
4.3.7 South Korea
4.3.7.1 South Korea onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.3.7.2 Regulatory Snapshot: South Korea
4.3.8 Taiwan
4.3.8.1 Taiwan onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.3.8.2 Regulatory Snapshot: Taiwan
4.3.9 Others
4.3.9.1 Others onshore wind energy market estimates and forecast, 2014 – 2020 (MW) (USD Million)
4.3.10 Turbine Analysis
4.3.10.1 Asia-Pacific Wind Turbine distribution, by turbine class (%)
4.3.11 Planned Onshore Wind Energy Projects
4.4 Europe
4.4.1 Europe onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.2 U.K

4.4.2.1 U.K onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.2.2 Regulatory Snapshot: the U.K
4.4.3 Denmark
4.4.3.1 Denmark onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.3.2 Regulatory Snapshot: Denmark
4.4.4 Belgium
4.4.4.1 Belgium onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.4.2 Regulatory Snapshot: Belgium
4.4.5 Germany
4.4.5.1 Germany onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.5.2 Regulatory Snapshot: Germany
4.4.6 Finland
4.4.6.1 Finland onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.6.2 Regulatory Snapshot: Finland
4.4.7 Sweden
4.4.7.1 Sweden onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.7.2 Regulatory Snapshot: Sweden
4.4.8 Norway
4.4.8.1 Norway onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.8.2 Regulatory Snapshot: Norway
4.4.9 Ireland
4.4.9.1 Ireland onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.9.2 Regulatory Snapshot: Ireland
4.4.10 Portugal
4.4.10.1 Portugal onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.10.2 Regulatory Snapshot: Portugal
4.4.11 Spain
4.4.11.1 Spain onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.11.2 Regulatory Snapshot: Spain

4.4.12 France
4.4.12.1 France onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.12.2 Regulatory Snapshot: France
4.4.13 Italy
4.4.13.1 Italy onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.13.2 Regulatory Snapshot: Italy
4.4.14 Netherlands
4.4.14.1 Netherlands onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.14.2 Regulatory Snapshot: Netherlands
4.4.15 Poland
4.4.15.1 Poland onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.15.2 Regulatory Snapshot: Poland
4.4.16 Austria
4.4.16.1 Austria onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.16.2 Regulatory Snapshot: Austria
4.4.17 Ukraine
4.4.17.1 Ukraine onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.17.2 Regulatory Snapshot: Ukraine

4.4.18 Romania
4.4.18.1 Romania onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.18.2 Regulatory Snapshot: Romania
4.4.19 Turkey
4.4.19.1 Turkey onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.19.2 Regulatory Snapshot: Turkey
4.4.20 Greece
4.4.20.1 Greece onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.20.2 Regulatory Snapshot: Greece
4.4.21 Others
4.4.21.1 Others onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.4.22 Turbine Analysis
4.4.22.1 Europe Wind Turbine distribution, By Turbine Class (%)
4.4.23 Planned Onshore Wind Energy Projects
4.5 Middle East and Africa (MEA)
4.5.1 MEA onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.5.2 Iran
4.5.2.1 Iran onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.5.2.2 Regulatory Snapshot: Iran
4.5.3 Egypt

4.5.3.1 Egypt onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.5.3.2 Regulatory Snapshot: Egypt
4.5.4 Morocco
4.5.4.1 Morocco onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.5.4.2 Regulatory Snapshot: Morocco
4.5.5 Tunisia
4.5.5.1 Tunisia onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.5.5.2 Regulatory Snapshot: Tunisia
4.5.6 Others
4.5.6.1 Others onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.5.7 Turbine Analysis
4.5.7.1 Middle East & Africa Wind Turbine distribution, By Turbine Class (%)
4.5.8 Planned Onshore Wind Energy Projects
4.6 South and Central America
4.6.1 South and Central America onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.6.2 Argentina
4.6.2.1 Argentina onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.6.2.2 Regulatory Snapshot: Argentina
4.6.3 Brazil
4.6.3.1 Brazil onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.6.3.2 Regulatory Snapshot: Brazil

4.6.4 Costa Rica
4.6.4.1 Costa Rica onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.6.4.2 Regulatory Snapshot: Costa Rica
4.6.5 Others
4.6.5.1 Others onshore wind energy market estimates and forecast, 2013 – 2020 (MW) (USD Million)
4.6.6 Turbine Analysis
4.6.6.1 South & Central America Wind Turbine distribution, By Turbine Class (%)
4.6.7 Planned Onshore Wind Energy Projects

Chapter 5 Company Profiles
5.1 Gamesa Corporacion Tecnologica SA
5.1.1 Company Overview
5.1.2 Product Portfolio
5.1.3 Financial Overview
5.1.4 Business Strategy
5.1.5 SWOT Analysis
5.1.6 Recent Developments
5.2 Goldwind Science and Technology Co., Ltd.
5.2.1 Company Overview
5.2.2 Product Portfolio
5.2.3 Financial Overview
5.2.4 Business Strategy
5.2.5 SWOT Analysis
5.2.6 Recent Developments
5.3 Siemens Wind Power

5.3.1 Company Overview
5.3.2 Product Portfolio
5.3.3 Financial Overview
5.3.4 Business Strategy
5.3.5 SWOT Analysis
5.3.6 Recent Developments
5.4 Sinovel Wind Group Co., Ltd.
5.4.1 Company overview
5.4.2 Product Portfolio
5.4.3 Business Strategy
5.4.4 SWOT Analysis
5.5 Vestas Wind Systems A/S
5.5.1 Company Overview
5.5.2 Product Portfolio
5.5.3 Financial Overview
5.5.4 Business Strategy
5.5.5 SWOT Analysis
5.5.6 Recent Developments
5.6 Dongfang Electric Corporation Limited
5.6.1 Company Overview
5.6.2 Product Portfolio
5.6.3 Financial Overview
5.6.4 Business Strategy
5.6.5 SWOT Analysis
5.6.6 Recent Developments
5.7 GE Wind Energy
5.7.1 Company Overview

5.7.2 Product Portfolio
5.7.3 Financial Overview
5.7.4 Business Strategy
5.7.5 SWOT Analysis
5.7.6 Recent Developments
5.8 Enercon GmbH
5.8.1 Company Overview
5.8.2 Product Portfolio
5.8.3 Business Strategy
5.8.4 SWOT Analysis
5.8.5 Recent Developments
5.9 Nordex SE
5.9.1 Company Overview
5.9.2 Product Portfolio
5.9.3 Financial Overview
5.9.4 Business Strategy
5.9.5 SWOT Analysis
5.9.6 Recent Developments
5.10 China Ming Yang Wind Power Group Limited
5.10.1 Company Overview
5.10.2 Product Portfolio
5.10.3 Financial Overview
5.10.4 Business Strategy
5.10.5 SWOT Analysis
5.10.6 Recent Developments
List of Figures

FIG. 1 Onshore Wind Energy: Market segmentation
FIG. 2 Global Onshore Wind Energy Market Volume and Revenue, 2014 – 2020 (MW) (USD Million)
FIG. 3 Value chain analysis of Onshore Wind Energy
FIG. 4 Porter's five forces analysis
FIG. 5 Global Onshore wind energy market, project cost breakdown by cost type, 2013 and 2020
FIG. 6 Civil Works cost reduction opportunity, By cost influencing factors
FIG. 7 Grid Connection cost reduction opportunity, By cost influencing factors
FIG. 8 Global Onshore wind energy market, wind turbine cost breakdown by component costs, 2013 and 2020
FIG. 9 Rotor Blade cost reduction opportunity, By cost influencing factors
FIG. 10 Turbine Tower cost reduction opportunity, By cost influencing factors
FIG. 11 Gearbox and Power Converter cost reduction opportunity, By cost influencing factors
FIG. 12 Transformer cost reduction opportunity, By cost influencing factors
FIG. 13 Market attractiveness analysis of Onshore Wind Energy Market, by Region, 2013
FIG. 14 Company market share of Onshore Wind Energy industry (MW), 2013
FIG. 15 Global onshore wind energy market, volume share by region, 2013 and 2020 (MW)
FIG. 16 North America onshore wind energy market volume and revenue, 2014 – 2020 (MW) (USD Million)
FIG. 17 U.S.A onshore wind energy market capacity and revenue, 2014 – 2020 (MW) (USD Million)
FIG. 18 Canada onshore wind energy market capacity and revenue, 2014 – 2020 (MW) (USD Million)
FIG. 19 Mexico onshore wind energy market capacity and revenue, 2014 – 2020 (MW) (USD Million)
FIG. 20 North America Wind Turbine Distribution, By Turbine Class (2013)
FIG. 21 Asia Pacific onshore wind energy market volume and revenue, 2014 – 2020 (MW) (USD Million)
FIG. 22 Australia onshore wind energy market capacity and revenue, 2014 – 2020 (MW) (USD Million)
FIG. 23 China onshore wind energy market capacity and revenue, 2014 – 2020 (MW) (USD Million)
FIG. 24 India onshore wind energy market capacity and revenue, 2014 – 2020 (MW) (USD Million)
FIG. 25 Japan onshore wind energy market capacity and revenue, 2014 – 2020 (MW) (USD Million)
FIG. 26 New Zealand onshore wind energy market capacity and revenue, 2014 – 2020 (MW) (USD Million)

FIG. 27 South Korea onshore wind energy market capacity and revenue, 2014 – 2020 (MW) (USD Million)
FIG. 28 Taiwan onshore wind energy market capacity and revenue, 2014 – 2020 (MW) (USD Million)
FIG. 29 Others onshore wind energy market capacity and revenue, 2014 – 2020 (MW) (USD Million)
FIG. 30 Asia-Pacific Wind Turbine Distribution, By Turbine Class (2013)
FIG. 31 Europe onshore wind energy market volume and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 32 U.K onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 33 Denmark onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 34 Belgium onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 35 Germany onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 36 Finland onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 37 Sweden onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 38 Norway onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 39 Ireland onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 40 Portugal onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 41 Spain onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 42 France onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 43 Italy onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 44 Netherlands onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 45 Poland onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 46 Austria onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)

FIG. 47 Ukraine onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 48 Romania onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 49 Turkey onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 50 Greece onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 51 Others onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 52 Europe Wind Turbine Distribution, By Turbine Class (2013)
FIG. 53 MEA onshore wind energy market volume and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 54 Iran onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 55 Egypt onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 56 Morocco onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 57 Tunisia onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 58 Others onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 59 The Middle East & Africa, Wind Turbine Distribution, By Turbine Class (2013)
FIG. 60 South and Central America onshore wind energy market volume and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 61 Argentina onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 62 Brazil onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 63 Costa Rica onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 64 Others onshore wind energy market capacity and revenue, 2013 – 2020 (MW) (USD Million)
FIG. 65 The South & Central America, Wind Turbine Distribution, By Turbine Class (2013)
List of Tables

TABLE 1 Onshore Wind Energy Market: Snapshot
TABLE 2 Drivers of Onshore Wind Energy Market: Impact Analysis
TABLE 3 Restraints of Onshore Wind Energy Market: Impact Analysis
TABLE 4 Opportunities in Onshore Wind Energy Market: Impact Analysis
TABLE 5 Global Onshore Wind energy plant cost breakdown and forecast, by cost type, 2013 - 2020 (Million USD/MW)
TABLE 6 Global Onshore Wind energy turbine cost breakdown and forecast, by cost type, 2013 - 2020 (Million USD/MW)
TABLE 7 Planned Onshore Wind Energy Projects: North America
TABLE 8 Planned Onshore Wind Energy Projects: Asia-Pacific
TABLE 9 Planned Onshore Wind Energy Projects: Europe
TABLE 10 Planned Onshore Wind Energy Projects: Middle East & Africa
TABLE 11 Planned Onshore Wind Energy Projects: South & Central America

To order this report: Onshore Wind Energy Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2014 - 2020
http://www.reportlinker.com/p02294114/Onshore-Wind-Energy-Market---Global-Industry-Analysis-Size-Share-Growth-Trends-and-Forecast-2014---2020.html

__________________________
Contact Clare: [email protected]
US: (339)-368-6001
Intl: +1 339-368-6001

SOURCE Reportlinker

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

@CloudExpo Stories
Once the decision has been made to move part or all of a workload to the cloud, a methodology for selecting that workload needs to be established. How do you move to the cloud? What does the discovery, assessment and planning look like? What workloads make sense? Which cloud model makes sense for each workload? What are the considerations for how to select the right cloud model? And how does that fit in with the overall IT tranformation? In his session at 15th Cloud Expo, John Hatem, head of V...
Cloud services are the newest tool in the arsenal of IT products in the market today. These cloud services integrate process and tools. In order to use these products effectively, organizations must have a good understanding of themselves and their business requirements. In his session at 15th Cloud Expo, Brian Lewis, Principal Architect at Verizon Cloud, will outline key areas of organizational focus, and how to formalize an actionable plan when migrating applications and internal services to...
SYS-CON Events announced today that ElasticBox is holding a Hackathon at DevOps Summit, November 6 from 12 pm -4 pm at the Santa Clara Convention Center in Santa Clara, CA. You can enter as an individual or team of up to 10 developers. A New Star Is Born Every Month! All completed ElasticBoxes will then be sent to a judging panel - 12 winners will be featured on the ElasticBox website in 2015. All entrants will receive five full enterprise licenses for one year + ElasticBox headphones + Elasti...
SAP is delivering break-through innovation combined with fantastic user experience powered by the market-leading in-memory technology, SAP HANA. In his General Session at 15th Cloud Expo, Thorsten Leiduck, VP ISVs & Digital Commerce, SAP, will discuss how SAP and partners provide cloud and hybrid cloud solutions as well as real-time Big Data offerings that help companies of all sizes and industries run better. SAP launched an application challenge to award the most innovative SAP HANA and SAP ...
Ixia develops amazing products so its customers can connect the world. Ixia helps its customers provide an always-on user experience through fast, secure delivery of dynamic connected technologies and services. Through actionable insights that accelerate and secure application and service delivery, Ixia's customers benefit from faster time to market, optimized application performance and higher-quality deployments.
SYS-CON Events announced today that Calm.io has been named “Bronze Sponsor” of DevOps Summit Silicon Valley, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Calm.io is a cloud orchestration platform for AWS, vCenter, OpenStack, or bare metal, that runs your CL tools puppet, Chef, shell, git, Jenkins, nagios, and will soon support New Relic and Docker. It can run hosted, or on premise and provides VM automation / expiry, self-service portals,...
In her General Session at 15th Cloud Expo, Anne Plese, Senior Consultant, Cloud Product Marketing, at Verizon Enterprise, will focus on finding the right mix of renting vs. buying Oracle capacity to scale to meet business demands, and offer validated Oracle database TCO models for Oracle development and testing environments. Anne Plese is a marketing and technology enthusiast/realist with over 19+ years in high tech. At Verizon Enterprise, she focuses on driving growth for the Verizon Cloud pla...
SYS-CON Events announced today that Aria Systems, the recurring revenue expert, has been named "Bronze Sponsor" of SYS-CON's 15th International Cloud Expo®, which will take place on November 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Aria Systems helps leading businesses connect their customers with the products and services they love. Industry leaders like Pitney Bowes, Experian, AAA NCNU, VMware, HootSuite and many others choose Aria to power their recurring revenue bu...
The Internet of Things (IoT) is going to require a new way of thinking and of developing software for speed, security and innovation. This requires IT leaders to balance business as usual while anticipating for the next market and technology trends. Cloud provides the right IT asset portfolio to help today’s IT leaders manage the old and prepare for the new. Today the cloud conversation is evolving from private and public to hybrid. This session will provide use cases and insights to reinforce t...
As Platform as a Service (PaaS) matures as a category, developers should have the ability to use the programming language of their choice to build applications and have access to a wide array of services. Bluemix is IBM's open cloud development platform that enables users to easily build cloud-based, creative mobile and web applications without having to spend large amounts of time and resources on configuring infrastructure and multiple software licenses. In this track, you will learn about the...
Blue Box has closed a $10 million Series B financing. The round was led by a strategic investor and included participation from prior investors including Voyager Capital and Founders Collective, as well as the Blue Box executive team. This round follows a $4.3 million Series A closed in December of 2012 and led by Voyager Capital. In May of this year, the company announced general availability of its private cloud as a service offering, Blue Box Cloud. Since that release, the company has dem...
SYS-CON Events announced today that Verizon has been named "Gold Sponsor" of SYS-CON's 15th International Cloud Expo®, which will take place on November 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Verizon Enterprise Solutions creates global connections that generate growth, drive business innovation and move society forward. With industry-specific solutions and a full range of global wholesale offerings provided over the company's secure mobility, cloud, strategic network...
SimpleECM is the only platform to offer a powerful combination of enterprise content management (ECM) services, capture solutions, and third-party business services providing simplified integrations and workflow development for solution providers. SimpleECM is opening the market to businesses of all sizes by reinventing the delivery of ECM services. Our APIs make the development of ECM services simple with the use of familiar technologies for a frictionless integration directly into web applicat...
The only place to be June 9-11 is Cloud Expo & @ThingsExpo 2015 East at the Javits Center in New York City. Join us there as delegates from all over the world come to listen to and engage with speakers & sponsors from the leading Cloud Computing, IoT & Big Data companies. Cloud Expo & @ThingsExpo are the leading events covering the booming market of Cloud Computing, IoT & Big Data for the enterprise. Speakers from all over the world will be hand-picked for their ability to explore the economic...
Cloudwick, the leading big data DevOps service and solution provider to the Fortune 1000, announced Big Loop, its multi-vendor operations platform. Cloudwick Big Loop creates greater collaboration between Fortune 1000 IT staff, developers and their database management systems as well as big data vendors. This allows customers to comprehensively manage and oversee their entire infrastructure, which leads to more successful production cluster operations, and scale-out. Cloudwick Big Loop supports ...
To manage complex web services with lots of calls to the cloud, many businesses have invested in Application Performance Management (APM) and Network Performance Management (NPM) tools. Together APM and NPM tools are essential aids in improving a business’s infrastructure required to support an effective web experience… but they are missing a critical component – Internet visibility. Internet connectivity has always played a role in customer access to web presence, but in the past few years use...
SAP is delivering break-through innovation combined with fantastic user experience powered by the market-leading in-memory technology, SAP HANA. In his General Session at 15th Cloud Expo, Thorsten Leiduck, VP ISVs & Digital Commerce, SAP, will discuss how SAP and partners provide cloud and hybrid cloud solutions as well as real-time Big Data offerings that help companies of all sizes and industries run better. SAP launched an application challenge to award the most innovative SAP HANA and SAP ...
Software AG helps organizations transform into Digital Enterprises, so they can differentiate from competitors and better engage customers, partners and employees. Using the Software AG Suite, companies can close the gap between business and IT to create digital systems of differentiation that drive front-line agility. We offer four on-ramps to the Digital Enterprise: alignment through collaborative process analysis; transformation through portfolio management; agility through process automation...
What are the benefits of using an enterprise-grade orchestration platform? In their session at 15th Cloud Expo, Jeff Tegethoff, CEO of Appcore, and Kedar Poduri, Senior Director of Product Management at Citrix Systems, will take a closer look at the architectural design factors needed to support diverse workloads and how to run these workloads efficiently as a service provider. They will also discuss how to deploy private cloud environments in 15 minutes or less.
Headquartered in Santa Monica, California, Bitium was founded by Kriz and Erik Gustavson. The 1,500 cloud-based application using Bitium’s analytics, app management, and single sign-on services include bug trackers, customer service dashboards, Google Apps, and social networks. The firm states website administrators can do multiple tasks online without revealing passwords. Bitium’s advisors include Microsoft’s former CMO and the former senior vice president of strategy, the founder and CEO of Li...