SYS-CON MEDIA Authors: Sean Houghton, Glenn Rossman, Ignacio M. Llorente, Xenia von Wedel, Peter Silva

News Feed Item

Opportunities for Composites in Global Aerospace Market 2014-2033

LONDON, Sept. 3, 2014 /PRNewswire/ -- Reportbuyer.com has added a new market research report:

Opportunities for Composites in Global Aerospace Market 2014-2033

https://www.reportbuyer.com/product/2082003/Opportunities-for-Composites-in-Global-Aerospace-Market-2014-2033- .html

Background :


High order backlog and an increasing production rate for various aircraft as well as high penetration are
the main drivers for significant composite materials demand in the aerospace industry. Lucintel expects
a major rebound in the market, especially in APAC region which is observing high demand for aircraft.
Composite materials market is anticipated to grow to 139 million pounds, valued at $5.9 billion in 2033.


Lucintel, a leading global management consulting and market research firm, has conducted a
competitive analysis on the industry and presents its findings in "Opportunities for Composites in the
Global Aerospace Market 2014-2033". The report analyzes the aerospace market for all the four
regions along with the risk factors and growth opportunities. The aerospace market is segmented by
APAC, Europe, North America, and ROW regions.


The global aerospace industry has a strong long-term demand for products and services, driven by
robust passenger and cargo demand. Lucintel predicts continued growth across all the sectors of civil
aircraft. In terms of aircraft units, the majority of deliveries will be in the business jet and single-aisle
mainline markets; however, in value terms, twin-aisle aircraft designed for use on longer-range routes
dominate the market. The fastest growing segments will be the 200- to 350-seat twin-aisle sector, large
regional jets, and very light business jets. The Boeing 787 uses composites for approximately 50% of its
total structural weight. Both the Airbus A380 and the 787 contain more than 100,000 pounds of
composites per aircraft. Composites consumption in the commercial aerospace industry will be driven
by three programs: Boeing 787, A350 XWB, and A380.

Although North America dominates the global aerospace market, APAC has a huge and growing
demand for aircraft. China and India, the two large and emerging economies of this region, are growing
rapidly.


Lucintel highlights key challenges faced by the aerospace industry. Decreasing defense budget in North
America and Europe will be partially offset by increased defense spending in emerging markets. China
manufactures its defense aircraft indigenously. Various aircraft are developed under license and various
programs are copies of other countries' defense aircraft. Defense aircraft represent the major portion of
India's defense procurement budget.


The report is a comprehensive overview of the advanced composite materials market in the global
aerospace industry. It provides a top-down view, starting from a useful characterization of the
aerospace market itself with accurate breakdown in the main segments and sub-segments (commercial
aircraft, regional aircraft, defense, etc.). The report contains detailed figures of the volumes (and
associated market value) of composites consumed in the different aerospace segments and sub-segments.

Lucintel's analysis also provides technical information regarding composite applications and processes
used in the manufacturing of various aircraft components. The report also includes a useful and
comprehensive directory of the main players and manufacturers in the industry.


This unique report from Lucintel will provide you with valuable information, insights, and tools needed to identify new growth opportunities and operate your business successfully in this market. This report will save hundreds of hours of your own personal research time and will significantly benefit you in expanding your business in this market. In today's stringent economy, you need every advantage that you can find.

Table of Contents


1. Executive Summary

2. Aerospace Market Analysis
2.1: Macro-level comparative economic analysis
2.2: Global aerospace market overview
2.3: Regional analysis
2.4: Recent trends in global aerospace market
2.5: Forecasts for global aerospace market

3. Commercial Aerospace Market Analysis
3.1: Overview of the commercial aerospace market
3.2: Commercial aerospace market size
3.2.1: Narrow-Body Aircraft
3.2.2: Wide-Body Aircraft
3.3: Market leaders and market shares
3.4: Commercial aerospace market trend
3.4.1: Narrow-Body Aircraft
3.4.2: Wide-Body Aircraft
3.5: Commercial aerospace market forecast

4. Regional Jet Market Analysis
4.1: Overview of the regional jet market
4.2; Regional jet market size
4.3; Market leaders and market shares
4.4: Regional jets market trend
4.5: Regional jets market forecast

5. General Aviation Market Analysis
5.1: Overview of the general aviation market
5.2: General Aviation Market Size
5.2.1: Piston Aircraft
5.2.2: Turboprop Aircraft
5.2.3: Business Jet Aircraft
5.3: Market leaders and market shares
5.4: Regional analysis
5.5: General aviation market trends
5.6: General aviation market forecast

6. Helicopter Market Analysis
6.1: Overview of the helicopter market
6.2: Helicopter market size
6.3: Market leaders
6.3.1: Civil helicopter market
6.3.2; Military helicopter market
6.4: Helicopter market trends
6.5: Helicopter market forecast

7. Defense Market Analysis
7.1: Overview of the defense market
7.2: Defense market size
7.3: Defense market trend
7.4: Defense market forecast

8. Manufacturing Process Analysis
8.1; Overview
8.1.1; Hand Lay-Up
8.1.2: ATP and AFP
8.1.3: Filament Winding
8.1.4: Roll Wrapping
8.2; Market size by manufacturing process
8.3: Commercial aircraft manufacturing process
8.4: GA manufacturing process
8.5: Helicopter manufacturing process
8.6: Defense manufacturing process

9. Evolution of Composite Applications in Global Aerospace Market
9.1: Evolution of composite applications

10. Composite Applications in Global Aerospace Market
10.1: Application of composites in commercial aircraft market
10.1.1: A380 Carbon Composite Tail Structure
10.1.2: A340-600 Airbus Access Panels
10.1.3: Ailerons and the Keel Beam
10.1.4: Floor Panel – A320
10.1.5: Pressure Bulkhead – A340
10.1.6: Brake Systems
10.1.7: Horizontal Stabilizer – A320

10.1.8: Torsion Boxes
10.1.9: Stringers
10.1.10: Pylon aft Secondary Structures A380
10.1.11: Kevlar Duct
10.1.12: A380 Vertical Tail Stringers and Stiffeners
10.1.13: B787 Nose Section
10.2: Application of composites in regional jet aircraft
10.2.1: Floor Panels - Gulfstream
10.2.2: Floor Panels - Fokker 100
10.2.3: Ice Protection Plates
10.2.4: Jet Engine Stator Vane
10.3: Application of Composites in GA
10.3.1: Rudder Trailing Edges - Gulfstream IV and V
10.3.2: Pressure Bulkheads - Gulfstream V
10.3.3: Rudder Ribs - Gulfstream IV and V
10.3.4: Ice protection plates - fairchild dornier 328
10.3.5: Flap Ribs - Fairchild Dornier 328
10.3.6: Dyn'Aero - Wing Structure
10.4: Application of composites in helicopters
10.4.1; Rotor Blades - Helibus
10.4.2: Enclosed Fantail – RAH66
10.5: Application of composites in defense
10.5.1: Boeing C-17 Torque Box
10.5.2: Nose Gear Doors - F-22 Raptor Aircraft 1
10.5.3: Launch Tubes (or Canisters) for the PAC-3
10.6: Application of composites in space
10.6.1: Parabolic reflector
10.6.2: Spacecraft solar-array panels and space-launcher engine frames

11. Composite Materials Market Analysis
11.1: Composite materials overview
11.2: Business issues with composite materials
11.3: Buy and fly weight analysis
11.4: Composites shipments by raw material type
11.5: Composites shipment by market segments
11.5.1: Composite materials in the commercial aerospace market
11.5.2: Composite materials in the regional jet market
11.5.3: Composite materials in GA market
11.5.4: Composite materials in helicopter market
11.5.5: Composite materials in defense market

12. Composite Materials in Aerospace Market by Region
12.1: Composite materials by region

13. Trend for Composites in Global Aerospace Market
13.1: Trend overview
13.2: Trends of composites in global aerospace market by segments
13.3: Trend of composites in global aerospace market by reinforcement
13.4: Trend of composites in global aerospace market by region
13.5: Trends in manufacturing process

14. Forecast for Composites in Global Aerospace Market
14.1: Forecast overview
14.2: Forecast for composites in commercial aerospace market
14.3: Forecast for composites in regional jet market
14.4: Forecast for composites in GA Market
14.5: Forecast for composites in helicopter market
14.6: Forecast for composites in defense aircraft market
14.7: Forecast for composites by reinforcement
14.8: Forecast of composites in global aerospace market by region
14.10: Forecasts in manufacturing process

List of Figures and Charts

Chapter 1. Executive Summary
Figure 1.1: Porter's Five Forces Analysis of global aerospace industry

Chapter 2. Aerospace Market Analysis
Figure 2.1: GDP growth rate year-over-year by region
Figure 2.2: Consumer confidence index
Figure 2.3: Global population in 2008 and 2022
Figure 2.4: US budget deficit and surplus during 2008-2013 by month
Figure 2.5: Global aerospace market by various segments
Figure 2.6: Global aerospace market ($B) by segment in 2013
Figure 2.7: Global aerospace market (units) by segment in 2013
Figure 2.8: Total fleet (commercial and regional jet aircraft, unit) by region in 2013
Figure 2.9: Total fleet (commercial and regional jet aircraft, unit) by region in 2033
Figure 2.10: General aviation aircraft production (unit) by region in 2013
Figure 2.11: General aviation aircraft production (unit) by region and by make in 2013
Figure 2.12: Trend in total unit shipment in various market segments of global aerospace industry
Figure 2.13: Trend in total $ shipment in various market segments of global aerospace industry
Figure 2.14: Global aerospace market ($B) by industry in 2008
Figure 2.15: Global aerospace market ($B) by industry in 2013
Figure 2.16: Global aerospace composites industry by various segments (end product market, $m) in 2013

Figure 2.17: Trend and forecast in total $ shipment in various market segments of global aerospace industry
Figure 2.18: Forecast for total $ shipment in global aerospace market

Chapter 3. Commercial Aerospace Market Analysis
Figure 3.1: Classification of commercial aerospace market
Figure 3.2: Commercial aircraft order (units shipment) by make in 2013
Figure 3.3: Commercial aircraft order ($M) by make in 2013
Figure 3.4: Commercial aircraft delivery (units shipment) by make in 2013
Figure 3.5: Commercial aircraft order (units shipment) by body type in 2013
Figure 3.6: Trend in order (units) by Boeing and airbus in commercial aerospace market
Figure 3.7: Trend in delivery (units) by Boeing and airbus in commercial aerospace market
Figure 3.8: Trend in commercial aircraft order (unit)
Figure 3.9: Trend in commercial aircraft delivery (unit)
Figure 3.10: Trend in order (units) by narrow-body and wide-body aircraft
Figure 3.11: Trend in delivery (units) by narrow-body and wide-body aircraft
Figure 3.12: Empty weight savings per seat for 787 and a350xwb compared to 777
Figure 3.13: Forecast in unit shipment in commercial aircraft delivery
Figure 3.14: Trend and forecast for commercial aerospace market (units) by body type for the last 10 and five years and the next five, 10, and 20 years
Figure 3.15: Trend and forecast for commercial aerospace market ($B) by body type for the last 10 and five years and the next five, 10, and 20 years

Chapter 4. Regional Jet Market Analysis
Figure 4.1: Classification of the regional jet market
Figure 4.2: Regional jet (units) by type (turboprop and jets) in 2013
Figure 4.3: Regional jet market (units) by manufacturers in 2013
Figure 4.4: Regional jet market ($B) by manufacturers in 2013
Figure 4.5: Monthly frequency for turboprop and regional jet according to OAG
Figure 4.6: Fuel price and turboprop order relationship
Figure 4.7: Regional jet (units) by type (turboprop and jets) delivered in 2008
Figure 4.8: Regional jet (units) by type (turboprop and jets) delivered in 2013
Figure 4.9: Trend (2008-2013) in regional jet shipment ($ billion and units)
Figure 4.10: Forecast in shipment in regional jets market segments of global aerospace industry
Figure 4.11: Trend and forecast for regional jet market ($ billion) for the last 10 and five years and the next five, 10, and 20 years
Figure 4.12: Trend and forecast for regional jet market (units) for the last 10 and five years, and the next five, 10, and 20 years

Chapter 5. General Aviation Market Analysis
Figure 5.1: Classification of the general aviation aircraft market
Figure 5.2: General aviation market ($ shipment) by type of aircraft (piston, turboprop, and business jet) in 2013
Figure 5.3: General aviation market (units) by type of aircraft (piston, turboprop, and business jet) in 2013
Figure 5.4: General aviation market (unit) by manufacturers in 2013
Figure 5.5: General aviation aircraft production (unit) by region in 2013
Figure 5.6: General aviation aircraft production by region (unit) and by make in 2013
Figure 5.7: General aviation market (units) in terms of type of aircraft (piston, turboprop, and business jet) in 2008
Figure 5.8: General aviation market (units) by type of aircraft (piston, turboprop, and business jet) in 2013
Figure 5.9: Trend in general aviation (units and $B)
Figure 5.10: Gulfstream product classification and new product by entry into service
Figure 5.11: Forecast in GA segment of global aerospace industry
Figure 5.12: Trend and forecast for general aviation market ($ billion) for last 10 and five years, and next five, 10, and 20 years
Figure 5.13: Trend and forecast for general aviation market (units) for last 10 and five years, and next five, 10, and 20 years

Chapter 6. Helicopter Market Analysis
Figure 6.1: Classification of the helicopter market
Figure 6.2: Helicopter market (units) by type of application (civil and military)
Figure 6.3: Helicopter market ($B) by type of application (civil and military)
Figure 6.4.: Helicopter market (units shipment) by manufacturers
Figure 6.5: Helicopter market ($B) by manufacturers
Figure 6.6: Civil helicopter market (units) by manufacturers in 2013
Figure 6.7: Military helicopter market distribution (unit) by manufacturers in 2013
Figure 6.8: Helicopter market (units) by type of application (civil and military) in 2008
Figure 6.9: Helicopter market (units) by type of application (civil and military) in 2013
Figure 6.10: Trend (2008-2013) in helicopter market (Units) by type of application (civil and military)
Figure 6.11: Trend in total helicopter shipment (units and $B)
Figure 6.12: Trend in helicopter production ($B) by manufacturers
Figure 6.13: Forecast of shipment in helicopter market segment of global aerospace industry
Figure 6.14: Trend and forecast of helicopter market ($B) for the last 10 and five years, nd the next five, 10, and 20 years
Figure 6.15: Trend and forecast of helicopter market (units) for the last 10 and five years and the next five, 10, and 20 years

Chapter 7. Defense Market Analysis
Figure 7.1: Classification of the defense aircraft market
Figure 7.2: Defense market (units) by type of aircraft (fighter, ground attacker, bomber, trainer, and UAV) in 2013
Figure 7.3: Trend in defense aircraft shipment (unit and $B shipment) by year
Figure 7.4: Forecast of shipment (unit and $) in defense market segment of global aerospace industry
Figure 7.5: Trend and forecast for defense aircraft market ($B) for the last 10 and five years, and the next five, 10, and 20 years
Figure 7.6: Trend and forecast for defense aircraft market (units) for the last 10 and five years, and the next five, 10, and 20 years

Chapter 8. Manufacturing Process Analysis
Figure 8.1: Composites shipment (M lbs.) in total aerospace industry by manufacturing process in 2013

Chapter 9. Evolution of Composite Applications in Global Aerospace Market
Figure 9.1: Evolution of composites applications in commercial aircraft market
Figure 9.2: Evolution of composites applications in defense aircraft market
Figure 9.3: Evolution of composite applications in rotorcraft market

Chapter 10. Composite Applications in Global Aerospace Market
Figure 10.1: Carbon composites tail structure
Figure 10.2: Airbus access panels
Figure 10.3: Keel beam held by a member of airbus staff
Figure 10.4: Pressure bulkhead of the airbus A340 fuselage
Figure 10.5: Aircraft braking systems – Airbus A321 and Boeing 757
Figure 10.6: Aircraft horizontal stabilizer
Figure 10.7: Kevlar duct
Figure 10.8: Jet engine stator vane
Figure 10.9: Dyn'Aero - wing structure
Figure 10.10: Parabolic reflector

Chapter 11. Composite Materials Market Analysis

Figure 11.1: Total fly materials (M lbs.) in various market segments of global aerospace industry in 2013
Figure 11.2: Total buy materials (M lbs.) in various market segments of global aerospace industry in 2013
Figure 11.3: Total buy weight all materials vs. composites
Figure 11.4: Competing materials (%) in commercial aerospace industry by make
Figure 11.5: Percentage distribution of materials in airbus a340 for buy and fly cases
Figure 11.6: Material distribution in airbus a340 for fly cases
Figure 11.7: Composites shipment (M lbs.) by reinforcement type in various segments of global aerospace industry in 2013
Figure 11.8: Composites distribution (M lbs.) in various market segments of global aerospace industry in 2013
Figure 11.9: Composites distribution ($M) in various market segments of global aerospace industry in 2013
Figure 11.10: Composites shipment (M lbs.) in commercial aerospace market for making of new and aftermarket aircraft in 2013
Figure 11.11: Composite materials shipments (buy weight, M lbs.) by type of reinforcement in various commercial aircraft in 2013
Figure 11.12: Composites percentage in different narrow-body aircraft
Figure 11.13: Trend in composites (M lbs.) in different narrow-body aircraft
Figure 11.14: Composites percentage in different wide-body aircraft in 2013
Figure 11.15: Trend in composites in different wide-body aircraft

Figure 11.16: Composites shipment (M lbs.) in regional jet market in 2013
Figure 11.17: Composites percentage in different regional jets (jet and turboprop) in 2013
Figure 11.18: Composites shipment (M lbs.) by type of aircraft (jet and turboprop) in regional jet market in 2013
Figure 11.19: Composites shipment (M lbs.) by type of reinforcement (carbon, glass, aramid, and others) in regional jet aircraft in 2013
Figure 11.20: Composites shipment (M lbs.) in general aviation market in 2013
Figure 11.21: Composites shipment (M lbs.) by type of aircraft in general aviation market in 2013
Figure 11.22: Composites shipment (M lbs.) by type of reinforcement in general aviation market in 2013
Figure 11.23: Composites shipment (M lbs.) in twin jet aircraft (gulfstream g-550) by applications
Figure 11.24: Composites shipment (M lbs.) in turboprop aircraft (amphibian) by applications
Figure 11.25: Composites shipment (M lbs.) in business jet (citation-x) by applications
Figure 11.26: Composites shipment (M lbs.) in helicopter market in 2013
Figure 11.27: Composites shipment (M lbs.) by type of helicopter (civil and military) in 2013
Figure 11.28: Distribution (%) of composites in helicopter (new and aftermarket) by manufacturers in 2013
Figure 11.29: Composites shipment (M lbs.) in civil helicopter (S-92 Helibus) by applications
Figure 11.30: Composites shipment (M lbs.) in military helicopter (Apache) by applications
Figure 11.31: Composites shipment (M lbs.) in defense market in 2013
Figure 11.32: Composites shipment (M lbs.) by type of defense aircraft in 2013
Figure 11.33: Composites shipment (M lbs.) for F/A-18 E/F by applications

Figure 11.34: Composites shipment (%) for C-130J by applications
Figure 11.35: Composites shipment (%) for global hawk by applications

Chapter 12. Composite Materials in Aerospace Market by Region
Figure 12.1: Composites distribution (%) in total aerospace market by region in 2013
Figure 12.2: Composites distribution ($M) in total aerospace market by region in 2013

Chapter 13. Trend for Composites in Global Aerospace Market
Figure 13.1: Composites shipment (M lbs.) in various market segments of global aerospace industry in 2008
Figure 13.2: Composites shipment (M lbs.) in various market segments of global aerospace industry in 2013
Figure 13.3: Composites shipment ($M) in various market segments of global aerospace industry in 2008
Figure 13.4: Composites shipment ($M) in various market segments of global aerospace industry in 2013
Figure 13.5: Trends in total composites consumption (M lbs.) in global aerospace industry by segments
Figure 13.6: Trends in total composites consumption ($M) in global aerospace industry by segments
Figure 13.7: Trend (2008-2013) in composites shipment in global aerospace market (M lbs.) by reinforcement type
Figure 13.8: Trend (2008-2013) in composites (M lbs.) distribution in global aerospace market by region
Figure 13.9: Growth trend in composites during 2008-2013 by region

Figure 13.10: Composites (M lbs.) distribution in global aerospace market by region, 2008
Figure 13.11: Composites (M lbs.) distribution in global aerospace market by region, 2013
Figure 13.12: Composites ($M) distribution in global aerospace market by region, 2013
Figure 13.13: Composites shipment (M lbs.) in various market segments of the aerospace industry in 2008
Figure 13.14: Composites shipment (M lbs.) in various market segments of the aerospace industry in 2013
Figure 13.15: CAGR (2008-2013) for manufacturing processes in the global aerospace industry

Chapter 14. Forecast for Composites in Global Aerospace Market
Figure 14.1: Total composites shipment (M lbs.) in global aerospace market for the last 10 and five years and the next five, 10, and 20 years
Figure 14.2: Total composites shipment ($M) in global aerospace market for last 10 and five years and the next five, 10, and 20 years
Figure 14.3: Trend in composites shipment (M lbs.) in various segments of global aerospace market
Figure 14.4: Trend in composites shipment ($m) in various segments of global aerospace market
Figure 14.5: Average annual composites shipment (M lbs.) in the commercial aerospace market
Figure 14.6: average annual composites shipment ($M) in the commercial aerospace market
Figure 14.7: Total composites shipment (M lbs.) in commercial aerospace market by body type in the last 10 and five years, and the next five, 10, and 20 years
Figure 14.8: Total composites shipment ($M) in commercial aerospace market by body type in the last 10 and five years, and the next five, 10, and 20 years
Figure 14.9: Total composites shipment (M lbs.) in commercial aerospace market by OEM in the last 10 and five years, and the next five, 10, and 20 years
Figure 14.10: Total composites shipment ($M) in commercial aerospace market by OEM in the last 10 and five years, and the next five, 10, and 20 years
Figure 14.11: Composites shipment (M lbs.) in wide-body aircraft and rest of global aerospace market in the last 10 years and the next 10 years
Figure 14.12: Total composites shipment (M lbs.) in regional jet market

Figure 14.13: Total composites shipment ($B) in regional jet aerospace market
Figure 14.14: Total composites shipment (M lbs.) in GA market
Figure 14.15: Total composites shipment ($B) in GA market
Figure 14.16: Total composites shipment (M lbs.) in helicopter market
Figure 14.17: Total composites shipment ($B) in helicopter market
Figure 14.18: Total composites shipment (M lbs.) in defense aircraft market
Figure 14.19: Total composites shipment ($B) in defense aircraft market
Figure 14.20: Forecast (2014-2019) of composites (M lbs.) distribution in global aerospace market by region
Figure 14.21: Growth forecast in composites during 2014-2019 by region
Figure 14.22: Composites (M lbs.) distribution in the global aerospace market by region in 2014
Figure 14.23: Composites (M lbs.) distribution in the global aerospace market by region in 2019
Figure 14.24: Composites ($ M) distribution in the global aerospace market by region in 2019
Figure 14.25: Composites shipment (m lbs.) in various market segments of global aerospace industry in 2014
Figure 14.26: Composites shipment (M lbs.) in various market segments of global aerospace industry in 2019
Figure 14.27: CAGR (2014-2019) for manufacturing process in global aerospace industry

List of Tables

Chapter 1. Executive Summary
Table 1.1: Global aerospace market parameters and attributes – end product market perspective
Table 1.2: Global aerospace market parameters and attributes – materials perspective

Chapter 2. Aerospace Market Analysis
Table 2.1: GDP and unemployment rate for leading countries

Table 2.2: Interest and exchange rates for leading countries
Table 2.3: Emerging market indicators (economy and financial market)
Table 2.4: Weight and price of various aircraft
Table 2.5: Trend in aerospace market ($ shipment) by industry sector
Table 2.6: Trend in aerospace market in terms of units delivered
Table 2.7: Forecast for various aircraft for the next 10 years (2014-2023) and 20 years (2014-2033) in terms of new aircraft delivered and revenue earned
Table 2.8: Regional jet forecast for next 20 years (2014-2033) in terms of new aircraft delivered by seat segment

Chapter 3. Commercial Aerospace Market Analysis
Table 3.1: Specifications of narrow-body aircraft
Table 3.2: Specifications of wide-body aircraft
Table 3.3: Short-Term 2014 outlook for commercial aerospace market
Table 3.4: Long-Term 2014 outlook for commercial aerospace market
Table 3.5: Forecast for various aircraft in next 10 years (2014-2023) and 20 years (2014-2033) in terms of new aircraft delivered and revenue generated

Chapter 4. Regional Jet Market Analysis
Table 4.1: Regional jet by type (turboprop and jets) in 2013
Table 4.2: Short-Term 2014 outlook
Table 4.3: Long-Term 2014 outlook
Table 4.4: Forecast for regional jets in next 10 years (2014-2023) and 20 years (2014-2033) in terms of new aircraft delivery and revenue

Chapter 5. General Aviation Market Analysis
Table 5.1: Segmentation of business jet market by size

Table 5.2: Globally manufactured airplane shipments by type in 2013
Table 5.3: US manufactured airplane shipments by type in 2013
Table 5.4: specifications of single-engine (Cessna-Skyhawk) aircraft
Table 5.5: Specifications of multi-engine (Baron 58 - Raytheon) aircraft
Table 5.6: Specifications of turboprop (Cessna-Caravan) aircraft
Table 5.7: Specifications of business jet (Cessna-Citation X) aircraft
Table 5.8: Production of general aviation by region
Table 5.9: Major new general aviation entry by year
Table 5.10: Forecast for general aviation in next 10 years (2014-2023) and 20 years
(2014-2033) in terms of new aircraft delivered and revenue generated

Chapter 6. Helicopter Market Analysis
Table 6.1: Classification of the helicopter market by engine type
Table 6.2: Forecast for helicopter in next 10 years (2014-2023) and next 20 years (2014-2033) in terms of new aircraft delivered and revenue generated

Chapter 7. Defense Market Analysis
Table 7.1: Forecast for defense market in next 10 years (2014-2023) and 20 years (2014-2033) in terms of new aircraft delivered and revenue generated

Chapter 9. Evolution of Composite Applications in Global Aerospace Market
Table 9.1: Evolution of composite material applications at Airbus

Chapter 10. Composite Applications in Global Aerospace Market
Table 10.1: Aerospace structures made of composites
Table 10.2: Selected materials and processes for Airbus A380

Chapter 11. Composite Materials Market Analysis
Table: 11.1: Airlines' key requirements
Table: 11.2: Aircraft manufacturers' key requirements
Table 11.3: Total materials consumption (buy weight of all materials) by various market segments in 2013
Table 11.4: Raw material distribution in different commercial aircraft
Table 11.5: Estimated buy-to-fly ratio for different materials used in a typical commercial aircraft (A340)
Table 11.6: Summary of composites usage in Boeing aircraft in 2013
Table 11.7: Summary of composites usage in Airbus production
Table 11.8: Summary of composites usage in General aviation in 2013
Table 11.9: Summary of composites usage in Helicopter in 2013
Table 11.10: Composites percentage for various defense aircraft
Table 11.11: Summary of composite materials usage in military aircraft production market in 2013
Table 11.12: Lockheed martin aircraft production sites
Table 11.13: Composite materials breakdown by applications in F/A-18 E/F

Chapter 13. Trend for Composites in Global Aerospace Market
Table 13.1: Trend in composites in volume and value shipment (2008-2013)
Table 13.2: Trend (2008-2013) in composites shipment in global aerospace market (M lbs.) by reinforcement type
Table 13.5: Trends in manufacturing process

Chapter 14. Forecast for Composites in Global Aerospace Market
Table 14.1: Forecast (2014-2033) of composites shipment in global aerospace market (M lbs.) by reinforcement type

Read the full report:
Opportunities for Composites in Global Aerospace Market 2014-2033

https://www.reportbuyer.com/product/2082003/Opportunities-for-Composites-in-Global-Aerospace-Market-2014-2033- .html

For more information:
Sarah Smith
Research Advisor at Reportbuyer.com  
Email: [email protected]  
Tel: +44 208 816 85 48
Website: www.reportbuyer.com

SOURCE ReportBuyer

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
DevOps Summit 2015 New York, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete...
“DevOps is really about the business. The business is under pressure today, competitively in the marketplace to respond to the expectations of the customer. The business is driving IT and the problem is that IT isn't responding fast enough," explained Mark Levy, Senior Product Marketing Manager at Serena Software, in this SYS-CON.tv interview at DevOps Summit, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
“We help people build clusters, in the classical sense of the cluster. We help people put a full stack on top of every single one of those machines. We do the full bare metal install," explained Greg Bruno, Vice President of Engineering and co-founder of StackIQ, in this SYS-CON.tv interview at 15th Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The cloud is becoming the de-facto way for enterprises to leverage common infrastructure while innovating and one of the biggest obstacles facing public cloud computing is security. In his session at 15th Cloud Expo, Jeff Aliber, a global marketing executive at Verizon, discussed how the best place for web security is in the cloud. Benefits include: Functions as the first layer of defense Easy operation –CNAME change Implement an integrated solution Best architecture for addressing network-l...
Mobile commerce traffic is surpassing desktop, yet less than 20% of sales in the U.S. are mobile commerce sales. In his session at 15th Cloud Expo, Dan Franklin, Segment Manager, Commerce, at Verizon Digital Media Services, defined mobile devices and discussed how next generation means simplification. It means taking your digital content and turning it into instantly gratifying experiences.
“In the past year we've seen a lot of stabilization of WebRTC. You can now use it in production with a far greater degree of certainty. A lot of the real developments in the past year have been in things like the data channel, which will enable a whole new type of application," explained Peter Dunkley, Technical Director at Acision, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
SYS-CON Events announced today that Windstream, a leading provider of advanced network and cloud communications, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Windstream (Nasdaq: WIN), a FORTUNE 500 and S&P 500 company, is a leading provider of advanced network communications, including cloud computing and managed services, to businesses nationwide. The company also offers broadband, p...
Leysin American School is an exclusive, private boarding school located in Leysin, Switzerland. Leysin selected an OpenStack-powered, private cloud as a service to manage multiple applications and provide development environments for students across the institution. Seeking to meet rigid data sovereignty and data integrity requirements while offering flexible, on-demand cloud resources to users, Leysin identified OpenStack as the clear choice to round out the school's cloud strategy. Additional...
The major cloud platforms defy a simple, side-by-side analysis. Each of the major IaaS public-cloud platforms offers their own unique strengths and functionality. Options for on-site private cloud are diverse as well, and must be designed and deployed while taking existing legacy architecture and infrastructure into account. Then the reality is that most enterprises are embarking on a hybrid cloud strategy and programs. In this Power Panel at 15th Cloud Expo (http://www.CloudComputingExpo.com...
Verizon Enterprise Solutions is simplifying the cloud-purchasing experience for its clients, with the launch of Verizon Cloud Marketplace, a key foundational component of the company's robust ecosystem of enterprise-class technologies. The online storefront will initially feature pre-built cloud-based services from AppDynamics, Hitachi Data Systems, Juniper Networks, PfSense and Tervela. Available globally to enterprises using Verizon Cloud, Verizon Cloud Marketplace provides a one-stop shop fo...
The Internet of Things is not new. Historically, smart businesses have used its basic concept of leveraging data to drive better decision making and have capitalized on those insights to realize additional revenue opportunities. So, what has changed to make the Internet of Things one of the hottest topics in tech? In his session at @ThingsExpo, Chris Gray, Director, Embedded and Internet of Things, discussed the underlying factors that are driving the economics of intelligent systems. Discover ...
The move in recent years to cloud computing services and architectures has added significant pace to the application development and deployment environment. When enterprise IT can spin up large computing instances in just minutes, developers can also design and deploy in small time frames that were unimaginable a few years ago. The consequent move toward lean, agile, and fast development leads to the need for the development and operations sides to work very closely together. Thus, DevOps become...

ARMONK, N.Y., Nov. 20, 2014 /PRNewswire/ --  IBM (NYSE: IBM) today announced that it is bringing a greater level of control, security and flexibility to cloud-based application development and delivery with a single-tenant version of Bluemix, IBM's

"Our premise is Docker is not enough. That's not a bad thing - we actually love Docker. At ActiveState all our products are based on open source technology and Docker is an up-and-coming piece of open source technology," explained Bart Copeland, President & CEO of ActiveState Software, in this SYS-CON.tv interview at DevOps Summit at Cloud Expo®, held Nov 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
SYS-CON Media announced today that Aruna Ravichandran, VP of Marketing, Application Performance Management and DevOps at CA Technologies, has joined DevOps Journal’s authors. DevOps Journal is focused on this critical enterprise IT topic in the world of cloud computing. DevOps Journal brings valuable information to DevOps professionals who are transforming the way enterprise IT is done. Aruna's inaugural article "Four Essential Cultural Hacks for DevOps Newbies" discusses how to demonstrate the...