SYS-CON MEDIA Authors: Pat Romanski, Yeshim Deniz, Janakiram MSV, Liz McMillan, Elizabeth White

Related Topics: @ThingsExpo, Industrial IoT, Agile Computing, Artificial Intelligence, @CloudExpo, @DXWorldExpo, FinTech Journal

@ThingsExpo: Article

Tips for Data Scientists | @CloudExpo #BigData #IoT #ML #AI #DataScience

I have come to realize that we also need to address the other side of the data science equation

I spend a lot of time helping organizations to “think like a data scientist.” My book “Big Data MBA: Driving Business Strategies with Data Science” has several chapters devoted to helping business leaders to embrace the power of data scientist thinking. My Big Data MBA class at the University of San Francisco School of Management focuses on teaching tomorrow’s business executives the power of analytics and data science to optimize key business processes, uncover new monetization opportunities and create a more compelling, engaging customer and channel engagement.

However in working with our data science teams, I have come to realize that we also need to address the other side of the data science equation; that we need to teach the data scientists in order for them to think like business executives. If the data science team cannot present the analytic results in a way that is relevant and meaningful to the business (so that it is clear what actions the business leaders need to take), then why bother.

In order to engagement more effectively with the business users, here are a couple of key points that the data science team needs to understand as they conduct their analytics:

#1: Tie the analytic results back to the organization’s key business initiatives, and more specifically, the organization’s key business decisions that drive them.
The data science team needs to understand thoroughly the key decisions that the business users are trying to make. Then, the data science team can present where and how the analytic results can help the business users make better decisions.

As part of ensuring that the analytic results are relevant and meaningful to the business, it is also critical to tie the analytic results back to the organization’s key financial or business drivers. Figure 1 shows an example of linking the analytics to the organization’s key financial and business drivers around the following business decision:

Which customers should receive which promotional offers?

Figure 1: Sample of Key Financial And Business Drivers

The Harvey Balls in Figure 1 show the relative impact that the promotional offer analytics would have on 6 key financial and business drivers in support of the customer targeting business decision.

Tying the analytic results back to organization’s financial or business drivers is key to ensuring that the data science work is relevant and meaningful to the business.

#2: Presentation of the analytic results is critical.
Don’t make the business users wade through the analytic output to try to figure out what’s important. Instead, make sure that the most meaningful analytic results stand out loud and clear to the business users. If the data supports it, make it stupidly clear where they should focus their attention and efforts.

For example, Figure 2 shows some sample analytic output that the data science team created around the business initiative of improving ground transportation effectiveness at a large location (e.g., shopping mall, port, arena) during a large event.

Figure 2: Raw Analytic Results

The business users had to look very hard at this slide to see what the slide was telling them about the business, and specifically what to do. That’s not what the business users want, and that is not how we ensure that our data science work is meaningful and actionable.

Instead, let’s apply some basic concepts to surface the meaningful and actionable insights. In Figure 3, we’ve developed some simple extensions to ensure that the meaningful and actionable insights come to the surface.

Figure 3: Presenting Actionable Insights

Instead of expecting the business users to wade through the analytics to determine what to do, Figure 3 highlights the key analytic insights or business “takeaways” (sometimes called “aha’s”) in the blue ribbon. Then the rest of the slide can illustrate how the analytics support the conclusions and insights. In particular, we have:

  • Highlighted the key actionable takeaways in the blue ribbon at the bottom of the analysis
  • We’ve removed extraneous bullet points, words and graphics that are not relevant to the key analytic takeaways.
  • We have highlighted the specific areas of the analysis that most loudly support our key takeaways.

Sometimes less really is more!

And if you really want to drive home your analytic points, get a marketing expert (thanks Phil Dussault) to present the analytic insights into a way that is engaging and exciting, while still being informative (see Figure 4).

Figure 4: Marketing Presentation of Analytic Results

Now that’s way cool!

Summary: “Thinking Like a Business Executive”
Data scientists can increase their value to the organization when they start to think like a business executive; to focus on how their business audience is going to consume the results of the analytics. The effectiveness of your data science work can be dramatically increased by:

  • Tying the analytic results back to the organization’s key decisions and the organization’s key financial and business drivers.
  • Effectively and clearly presenting the analytic results, insights and recommendations in a way that is engaging, informative and actionable to the business users.

When the data scientist has accomplished those objectives, then they’re well on their way to making themselves indispensable to the business and crossing the chasm to “thinking like a business executive.”

To hear a bit more about this “thinking like a business executive” approach, catch my “Respect the Data” presentation at the EMC Global Services booth at EMC World on Wednesday, May 4th at noon.

The post Tips for Data Scientists: Think Like a Business Executive appeared first on InFocus.

More Stories By William Schmarzo

Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business” and “Big Data MBA: Driving Business Strategies with Data Science”, is responsible for setting strategy and defining the Big Data service offerings for Hitachi Vantara as CTO, IoT and Analytics.

Previously, as a CTO within Dell EMC’s 2,000+ person consulting organization, he works with organizations to identify where and how to start their big data journeys. He’s written white papers, is an avid blogger and is a frequent speaker on the use of Big Data and data science to power an organization’s key business initiatives. He is a University of San Francisco School of Management (SOM) Executive Fellow where he teaches the “Big Data MBA” course. Bill also just completed a research paper on “Determining The Economic Value of Data”. Onalytica recently ranked Bill as #4 Big Data Influencer worldwide.

Bill has over three decades of experience in data warehousing, BI and analytics. Bill authored the Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements. Bill serves on the City of San Jose’s Technology Innovation Board, and on the faculties of The Data Warehouse Institute and Strata.

Previously, Bill was vice president of Analytics at Yahoo where he was responsible for the development of Yahoo’s Advertiser and Website analytics products, including the delivery of “actionable insights” through a holistic user experience. Before that, Bill oversaw the Analytic Applications business unit at Business Objects, including the development, marketing and sales of their industry-defining analytic applications.

Bill holds a Masters Business Administration from University of Iowa and a Bachelor of Science degree in Mathematics, Computer Science and Business Administration from Coe College.

Latest Stories
Because Linkerd is a transparent proxy that runs alongside your application, there are no code changes required. It even comes with Prometheus to store the metrics for you and pre-built Grafana dashboards to show exactly what is important for your services - success rate, latency, and throughput. In this session, we'll explain what Linkerd provides for you, demo the installation of Linkerd on Kubernetes and debug a real world problem. We will also dig into what functionality you can build on ...
Intel is an American multinational corporation and technology company headquartered in Santa Clara, California, in the Silicon Valley. It is the world's second largest and second highest valued semiconductor chip maker based on revenue after being overtaken by Samsung, and is the inventor of the x86 series of microprocessors, the processors found in most personal computers (PCs). Intel supplies processors for computer system manufacturers such as Apple, Lenovo, HP, and Dell. Intel also manufactu...
AI and machine learning disruption for Enterprises started happening in the areas such as IT operations management (ITOPs) and Cloud management and SaaS apps. In 2019 CIOs will see disruptive solutions for Cloud & Devops, AI/ML driven IT Ops and Cloud Ops. Customers want AI-driven multi-cloud operations for monitoring, detection, prevention of disruptions. Disruptions cause revenue loss, unhappy users, impacts brand reputation etc.
Serverless applications increase developer productivity and time to market, by freeing engineers from spending time on infrastructure provisioning, configuration and management. Serverless also simplifies Operations and reduces cost - as the Kubernetes container infrastructure required to run these applications is automatically spun up and scaled precisely with the workload, to optimally handle all runtime requests. Recent advances in open source technology now allow organizations to run Serv...
In 2014, Amazon announced a new form of compute called Lambda. We didn't know it at the time, but this represented a fundamental shift in what we expect from cloud computing. Now, all of the major cloud computing vendors want to take part in this disruptive technology. In his session at 20th Cloud Expo, John Jelinek IV, a web developer at Linux Academy, will discuss why major players like AWS, Microsoft Azure, IBM Bluemix, and Google Cloud Platform are all trying to sidestep VMs and containers...
Is advanced scheduling in Kubernetes achievable?Yes, however, how do you properly accommodate every real-life scenario that a Kubernetes user might encounter? How do you leverage advanced scheduling techniques to shape and describe each scenario in easy-to-use rules and configurations? In his session at @DevOpsSummit at 21st Cloud Expo, Oleg Chunikhin, CTO at Kublr, answered these questions and demonstrated techniques for implementing advanced scheduling. For example, using spot instances and co...
At CloudEXPO Silicon Valley, June 24-26, 2019, Digital Transformation (DX) is a major focus with expanded DevOpsSUMMIT and FinTechEXPO programs within the DXWorldEXPO agenda. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term. A total of 88% of Fortune 500 companies from a generation ago are now out of business. Only 12% still survive. Similar percentages are found throug...
Atmosera delivers modern cloud services that maximize the advantages of cloud-based infrastructures. Offering private, hybrid, and public cloud solutions, Atmosera works closely with customers to engineer, deploy, and operate cloud architectures with advanced services that deliver strategic business outcomes. Atmosera's expertise simplifies the process of cloud transformation and our 20+ years of experience managing complex IT environments provides our customers with the confidence and trust tha...
Here to help unpack insights into the new era of using containers to gain ease with multi-cloud deployments are our panelists: Matt Baldwin, Founder and CEO at StackPointCloud, based in Seattle; Nic Jackson, Developer Advocate at HashiCorp, based in San Francisco, and Reynold Harbin, Director of Product Marketing at DigitalOcean, based in New York. The discussion is moderated by Dana Gardner, principal analyst at Interarbor Solutions.
"There is a huge interest in Kubernetes. People are now starting to use Kubernetes and implement it," stated Sebastian Scheele, co-founder of Loodse, in this SYS-CON.tv interview at DevOps at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
Today most companies are adopting or evaluating container technology - Docker in particular - to speed up application deployment, drive down cost, ease management and make application delivery more flexible overall. As with most new architectures, this dream takes significant work to become a reality. Even when you do get your application componentized enough and packaged properly, there are still challenges for DevOps teams to making the shift to continuous delivery and achieving that reducti...
GCP Marketplace is based on a multi-cloud and hybrid-first philosophy, focused on giving Google Cloud partners and enterprise customers flexibility without lock-in. It also helps customers innovate by easily adopting new technologies from ISV partners, such as commercial Kubernetes applications, and allows companies to oversee the full lifecycle of a solution, from discovery through management.
Public clouds dominate IT conversations but the next phase of cloud evolutions are "multi" hybrid cloud environments. The winners in the cloud services industry will be those organizations that understand how to leverage these technologies as complete service solutions for specific customer verticals. In turn, both business and IT actors throughout the enterprise will need to increase their engagement with multi-cloud deployments today while planning a technology strategy that will constitute a ...
Skeuomorphism usually means retaining existing design cues in something new that doesn’t actually need them. However, the concept of skeuomorphism can be thought of as relating more broadly to applying existing patterns to new technologies that, in fact, cry out for new approaches. In his session at DevOps Summit, Gordon Haff, Senior Cloud Strategy Marketing and Evangelism Manager at Red Hat, discussed why containers should be paired with new architectural practices such as microservices rathe...
Using serverless computing has a number of obvious benefits over traditional application infrastructure - you pay only for what you use, scale up or down immediately to match supply with demand, and avoid operating any server infrastructure at all. However, implementing maintainable and scalable applications using serverless computing services like AWS Lambda poses a number of challenges. The absence of long-lived, user-managed servers means that states cannot be maintained by the service. Lo...