SYS-CON MEDIA Authors: Stackify Blog, Zakia Bouachraoui, Elizabeth White, Pat Romanski, Liz McMillan

Blog Feed Post

What Ops Needs to Know about APIs and Compression

I’ve been reading up on APIs cause, coolness. And in particular I really enjoyed reading Best Practices for Designing a Pragmatic RESTful API because it had a lot of really good information and advice.

And then I got to the part about compressing your APIs.

Before we go too far let me first say I’m not saying you shouldn’t compress your API or app responses. You probably should. What I am saying is that where you compress data and when are important considerations.

That’s because generally speaking no one has put their web server (which is ultimately what tends to serve up responses, whether they’re APIs or objects, XML or JSON) at the edge of the Internet. You know, where it’s completely vulnerable. It’s usually several devices back in the networking gauntlet that has be run before data gets from the edge of your network to the server.

wrong architectureThis is because there are myriad bad actors out salivating at the prospect of a return to an early aughts data center architecture in which firewalls, DDoS protection, and other app security services were not physically and logically located upstream from the apps they protect today.

Cause if you don’t have to navigate the network, it’s way easier to launch an attack on an app.

Today, we employ an average of 11 different services in the network, upstream from the app, to provide security, scale, and performance-enhancing services. Like compression. better architecture 

Now, you can enable compression on the web server. It’s a standard thing in HTTP and it’s little more than a bit to flip in the configuration. Easy peasy performance-enhancing change, right?

Except that today that’s not always true.

The primary reason compression improves performance is because when it reduces the size of data it reduces the number of packets that must be transmitted. That reduces the potential for congestion that causes a Catch-22 where TCP retransmits increase congestion that increases packet loss that increases… well, you get the picture. This is particularly true when mobile clients are connecting via cellular networks, because latency is a real issue for them and the more round trips it takes, the worse the application experience.

Suffice to say that the primary reason compression improves performance is that it reduces the amount of data needing to be transmitted which means “faster” delivery to the client. Fewer packets = less time = happier users.

That’s a good thing. Except when compression gets in the way or doesn’t provide any real reduction that would improve performance.

What? How can that be, you ask.

Remember that we’re looking for compression to reduce the number of packets transmitted, especially when it has to traverse a higher latency, lower capacity link between the data center and the client.

It turns out that sometimes compression doesn’t really help with that.

Consider the aforementioned article and its section on compressing. The author ran some tests, and concluded that compression of text-based data produces some really awesome results:

Let's look at this with a real world example. I've pulled some data from GitHub's API, which uses pretty print by default. I'll also be doing some gzip comparisons:


$ curl https://api.github.com/users/veesahni > with-whitespace.txt
$ ruby -r json -e 'puts JSON JSON.parse(STDIN.read)' < with-whitespace.txt > without-whitespace.txt
$ gzip -c with-whitespace.txt > with-whitespace.txt.gz
$ gzip -c without-whitespace.txt > without-whitespace.txt.gz

The output files have the following sizes:

  • without-whitespace.txt - 1252 bytes
  • with-whitespace.txt - 1369 bytes
  • without-whitespace.txt.gz - 496 bytes
  • with-whitespace.txt.gz - 509 bytes

In this example, the whitespace increased the output size by 8.5% when gzip is not in play and 2.6% when gzip is in play. On the other hand, the act of gzipping in itself provided over 60% in bandwidth savings. Since the cost of pretty printing is relatively small, it's best to pretty print by default and ensure gzip compression is supported!

To further hammer in this point, Twitter found that there was an 80% savings (in some cases)when enabling gzip compression on their Streaming API. Stack Exchange went as far as to never return a response that's not compressed!

 

Wow! I mean, from a purely mathematical perspective, that’s some awesome results. And the author is correct in saying it will provide bandwidth savings.

What those results won’t necessarily do is improve performance because the original size of the file was already less than the MSS for a single packet. Which means compressed or not, that data takes exactly one packet to transmit. That’s it. I won’t bore you with the mathematics, but the speed of light and networking says one packet takes the same amount of time to transit whether it’s got 496 bytes of payload or 1396 bytes of payload. The typical MSS for Ethernet packets is 1460 bytes, which means compressing something smaller than that effectively nets you nothing in terms of performance. It’s like a plane. It takes as long to fly from point A to point B whether there are 14 passengers or 140. Fuel efficiency (bandwidth) is impacted, but that doesn’t really change performance, just the cost.

Furthermore, compressing the payload at the web server means that web app security services upstream have to decompress if they want to do their job, which is to say scan responses for sensitive or excessive data indicative of a breach of security policies. This is a big deal, kids. 42% of respondents in our annual State of Application Delivery survey always scan responses as part of their overall attack-surfaces-soad-2016security strategy to prevent data leaks. Which means they have to spend extra time to decompress the data to evaluate it and then recompress it, or perhaps they can’t inspect it at all.

Now, that said, bandwidth savings are a good thing. It’s part of any comprehensive scaling strategy to consider the impact of increasing use of an app on bandwidth. And a clogged up network can impact performance negatively so compression is a good idea. But not necessarily at the web server. This is akin to carefully considering where you enforce SSL/TLS security measures, as there are similar impacts on security services upstream from the app / web server.

That’s why the right place for compression and SSL/TLS is generally upstream, in the network, after security has checked out the response and it’s actually ready to be delivered to the client. That’s usually the load balancing service or the ADC, where compression can not only be applied most efficiently and without interfering with security services and offsetting the potential gains by forcing extra processing upstream.

As with rate limiting APIs, it’s not always a matter of whether or not you should, it’s a matter of where you should.

Architecture, not algorithms, are the key to scale and performance of modern applications. 

Read the original blog entry...

More Stories By Lori MacVittie

Lori MacVittie is responsible for education and evangelism of application services available across F5’s entire product suite. Her role includes authorship of technical materials and participation in a number of community-based forums and industry standards organizations, among other efforts. MacVittie has extensive programming experience as an application architect, as well as network and systems development and administration expertise. Prior to joining F5, MacVittie was an award-winning Senior Technology Editor at Network Computing Magazine, where she conducted product research and evaluation focused on integration with application and network architectures, and authored articles on a variety of topics aimed at IT professionals. Her most recent area of focus included SOA-related products and architectures. She holds a B.S. in Information and Computing Science from the University of Wisconsin at Green Bay, and an M.S. in Computer Science from Nova Southeastern University.

Latest Stories
In a recent survey, Sumo Logic surveyed 1,500 customers who employ cloud services such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP). According to the survey, a quarter of the respondents have already deployed Docker containers and nearly as many (23 percent) are employing the AWS Lambda serverless computing framework. It's clear: serverless is here to stay. The adoption does come with some needed changes, within both application development and operations. Th...
The benefits of automated cloud deployments for speed, reliability and security are undeniable. The cornerstone of this approach, immutable deployment, promotes the idea of continuously rolling safe, stable images instead of trying to keep up with managing a fixed pool of virtual or physical machines. In this talk, we'll explore the immutable infrastructure pattern and how to use continuous deployment and continuous integration (CI/CD) process to build and manage server images for any platform....
AI and machine learning disruption for Enterprises started happening in the areas such as IT operations management (ITOPs) and Cloud management and SaaS apps. In 2019 CIOs will see disruptive solutions for Cloud & Devops, AI/ML driven IT Ops and Cloud Ops. Customers want AI-driven multi-cloud operations for monitoring, detection, prevention of disruptions. Disruptions cause revenue loss, unhappy users, impacts brand reputation etc.
Atmosera delivers modern cloud services that maximize the advantages of cloud-based infrastructures. Offering private, hybrid, and public cloud solutions, Atmosera works closely with customers to engineer, deploy, and operate cloud architectures with advanced services that deliver strategic business outcomes. Atmosera's expertise simplifies the process of cloud transformation and our 20+ years of experience managing complex IT environments provides our customers with the confidence and trust tha...
Enterprises are adopting Kubernetes to accelerate the development and the delivery of cloud-native applications. However, sharing a Kubernetes cluster between members of the same team can be challenging. And, sharing clusters across multiple teams is even harder. Kubernetes offers several constructs to help implement segmentation and isolation. However, these primitives can be complex to understand and apply. As a result, it’s becoming common for enterprises to end up with several clusters. This...
Containers and Kubernetes allow for code portability across on-premise VMs, bare metal, or multiple cloud provider environments. Yet, despite this portability promise, developers may include configuration and application definitions that constrain or even eliminate application portability. In this session we'll describe best practices for "configuration as code" in a Kubernetes environment. We will demonstrate how a properly constructed containerized app can be deployed to both Amazon and Azure ...
Is advanced scheduling in Kubernetes achievable?Yes, however, how do you properly accommodate every real-life scenario that a Kubernetes user might encounter? How do you leverage advanced scheduling techniques to shape and describe each scenario in easy-to-use rules and configurations? In his session at @DevOpsSummit at 21st Cloud Expo, Oleg Chunikhin, CTO at Kublr, answered these questions and demonstrated techniques for implementing advanced scheduling. For example, using spot instances and co...
At CloudEXPO Silicon Valley, June 24-26, 2019, Digital Transformation (DX) is a major focus with expanded DevOpsSUMMIT and FinTechEXPO programs within the DXWorldEXPO agenda. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term. A total of 88% of Fortune 500 companies from a generation ago are now out of business. Only 12% still survive. Similar percentages are found throug...
Public clouds dominate IT conversations but the next phase of cloud evolutions are "multi" hybrid cloud environments. The winners in the cloud services industry will be those organizations that understand how to leverage these technologies as complete service solutions for specific customer verticals. In turn, both business and IT actors throughout the enterprise will need to increase their engagement with multi-cloud deployments today while planning a technology strategy that will constitute a ...
Using serverless computing has a number of obvious benefits over traditional application infrastructure - you pay only for what you use, scale up or down immediately to match supply with demand, and avoid operating any server infrastructure at all. However, implementing maintainable and scalable applications using serverless computing services like AWS Lambda poses a number of challenges. The absence of long-lived, user-managed servers means that states cannot be maintained by the service. Lo...
GCP Marketplace is based on a multi-cloud and hybrid-first philosophy, focused on giving Google Cloud partners and enterprise customers flexibility without lock-in. It also helps customers innovate by easily adopting new technologies from ISV partners, such as commercial Kubernetes applications, and allows companies to oversee the full lifecycle of a solution, from discovery through management.
Using serverless computing has a number of obvious benefits over traditional application infrastructure - you pay only for what you use, scale up or down immediately to match supply with demand, and avoid operating any server infrastructure at all. However, implementing maintainable and scalable applications using serverless computing services like AWS Lambda poses a number of challenges. The absence of long-lived, user-managed servers means that states cannot be maintained by the service. Lo...
Today most companies are adopting or evaluating container technology - Docker in particular - to speed up application deployment, drive down cost, ease management and make application delivery more flexible overall. As with most new architectures, this dream takes significant work to become a reality. Even when you do get your application componentized enough and packaged properly, there are still challenges for DevOps teams to making the shift to continuous delivery and achieving that reducti...
At CloudEXPO Silicon Valley, June 24-26, 2019, Digital Transformation (DX) is a major focus with expanded DevOpsSUMMIT and FinTechEXPO programs within the DXWorldEXPO agenda. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term. A total of 88% of Fortune 500 companies from a generation ago are now out of business. Only 12% still survive. Similar percentages are found throug...
Docker and Kubernetes are key elements of modern cloud native deployment automations. After building your microservices, common practice is to create docker images and create YAML files to automate the deployment with Docker and Kubernetes. Writing these YAMLs, Dockerfile descriptors are really painful and error prone.Ballerina is a new cloud-native programing language which understands the architecture around it - the compiler is environment aware of microservices directly deployable into infra...