SYS-CON MEDIA Authors: Pat Romanski, Gary Arora, Zakia Bouachraoui, Yeshim Deniz, Liz McMillan

Related Topics: Wearables, @CloudExpo, @DXWorldExpo, @ThingsExpo

Wearables: Blog Post

Difference Between Big Data and Internet of Things | @ExpoDX @Schmarzo #BigData #IoT #IIoT #DigitalTransformation

What does it mean, as a vendor, to say that you support the Internet of Things (IoT) from an analytics perspective?

A recent argument with folks whose intelligence I hold in high regard (like Tom, Brandon, Wei, Anil, etc.) got me thinking about the following question:

What does it mean, as a vendor, to say that you support the Internet of Things (IoT) from an analytics perspective?

I think the heart of that question really boils down to this:

What are the differences between big data (which is analyzing large amounts of mostly human-generated data to support longer-duration use cases such as predictive maintenance, capacity planning, customer 360 and revenue protection) and IoT (which is aggregating and compressing massive amounts of low latency / low duration / high volume machine-generated data coming from a wide variety of sensors to support real-time use cases such as operational optimization, real-time ad bidding, fraud detection, and security breach detection)?

I don’t believe that loading sensor data into a data lake and performing data science to create predictive analytic models qualifies as doing IoT analytics.  To me, that’s just big data (and potentially REALLY BIG DATA with all that sensor data).  In order for one to claim that they can deliver IoT analytic solutions requires big data (with data science and a data lake), but IoT analytics must also include:

  1. Streaming data management with the ability to ingest, aggregate (e.g., mean, median, mode) and compress real-time data coming off a wide variety of sensor devices “at the edge” of the network, and
  2. Edge analytics that automatically analyzes real-time sensor data and renders real-time decisions (actions) at the edge of the network that optimizes operational performance (blade angle or yaw) or flags unusual performance or behaviors for immediate investigation (security breaches, fraud detection).

If you cannot manage real-time streaming data and make real-time analytics and real-time decisions at the edge, then you are not doing IOT or IOT analytics, in my humble opinion.  So what is required to support these IoT data management and analytic requirements?

The IoT “Analytics” Challenge
The Internet of Things (or Industrial Internet) operates at machine-scale, by dealing with machine-to-machine generated data.  This machine-generated data creates discrete observations (e.g., temperature, vibration, pressure, humidity) at very high signal rates (1,000s of messages/sec).  Add to this the complexity that the sensor data values rarely change (e.g., temperature operates within an acceptably small range).  However, when the values do change the ramifications, the changes will likely be important.

Consequently to support real-time edge analytics, we need to provide detailed data that can flag observations of concern, but then doesn’t overwhelm the ability to get meaningful data back to the core (data lake) for more broad-based, strategic analysis.

One way that we see organizations addressing the IoT analytics needs is via a 3-tier Analytics Architecture (see Figure 1).

Figure 1: IoT Analytics 3-Tier Architecture

We will use a wind turbine farm to help illustrate the 3-tier analytics architecture capabilities.

Tier 1 performs individual wind turbine real-time performance analysis and optimization.  Tier 1 must manage (ingest and compress) real-time data streams coming off of multiple, heterogeneous sensors. Tier 1 analyzes the data, and processes the incoming data against static or dynamically updated analytic models (e.g., rules-based, decision trees) for immediate or near-immediate actions.

Purpose-built T1 edge gateways leverage real-time data compression techniques (e.g., see the article “timeseries storage and data compression” for more information on timeseries databases) to only send a subset of the critical data (e.g., data that has changed) back to T2 and T3 (core).

Let’s say that you are monitoring the temperatures of a compressor inside of a large industrial engine.  Let’s say the average temperature of that compressor is 99 degrees, and only varies between 98 to 100 degrees within a 99% confidence level.  Let’s also say the compressor is emitting the following temperature readings 10 times a second:

99, 99, 99, 98, 98, 99, 99, 98, 99, 99, 100, 99, 99, 99, 100, 99, 98, 99, 99…

You have 10,000 of readings that don’t vary from that range.  So why send all of the readings (which from a transmission bandwidth perspective could be significant)?  Instead, use a timeseries database to only send mean, medium, mode, variances, standard deviation and other statistical variables of the 10,000 readings instead of the individual 10,000 readings.

However, let’s say that all of a sudden we start getting readings outside the normal 99% confidence level:

99, 99, 99, 100, 100, 101, 101, 102, 102, 103, 104, 104, 105, …

Then we’d apply basic Change Data Capture (CDC) techniques to capture and transmit the subset of critical data to T2 and T3 (core).

Consequently, edge gateways leverage timeseries compression techniques to drive faster automated decisions while only sending a subset of critical data to the core for further analysis and action.

The Tier 1 analytics are likely being done via an on-premise analytics server or gateway (see Figure 2).

Figure 2:  IoT Tier 1 Analytics

Tier 2 optimizes performance and predicts maintenance needs across the wind turbines in the same wind farm.  Tier 2 requires a distributed dynamic content processing rule generation and execution analytics engine that integrates and analyzes data aggregated across the potentially heterogeneous wind turbines. Cohort analysis is typical in order to identify, validate and codify performance problems and opportunities across the cohort wind turbines.  For example, in the wind farm, the Tier 2 analytics are responsible for real-time learning that can generate the optimal torque and position controls for the individual wind turbines. Tier 2 identifies and shares best practices across the wind turbines in the wind farm without having to be dependent upon the Tier 3 core analytics platform (see Figure 3).

Figure 3: Tier 2 Analytics: Optimizing Cohort Performance

Tier 3 is the data lake enabled core analytics platform. The tier 3 core analytics platform includes analytics engines, data sets and data management services (e.g., governance, metadata management, security, authentication) that enable access to the data (sensor data plus other internal and external data sources) and existing analytic models that supports data science analytic/predictive model development and refinement.  Tier 3 aggregates the critical data across all wind farms and individual turbines, and combines the sensor data with external data sources which could include weather (humidity, temperatures, precipitation, air particles, etc.), electricity prices, wind turbine maintenance history, quality scores for the wind turbine manufacturers, and performance profiles of the wind turbine mechanics and technicians (see Figure 4).

Figure 4:  Core Analytics for Analytic Model Development and Refinement

With the rapid increase in storage and processing power at the edges of the Internet of Things (for example, the Dell Edge Gateway 3000 Series), we will see more and more analytic capabilities being pushed to the edge.

How Do You Start Your IoT Journey
While the rapidly evolving expertise on the IoT edge technologies can be very exciting (graphical processing units in gateway servers with embedded machine learning capabilities with 100’s of gigabytes of storage), the starting point for the IoT journey must first address this basic question:

How effective is your organization at leveraging data and analytics to power your business (or operational) models?

We have tweaked the Big Data Business Model Maturity Index to help organizations not only understand where they sit on the maturity index with respect to the above question, but also to provide a roadmap for how organizations can advance up the maturity index to become more effective at leveraging the wealth of IOT data with advanced analytics to power their business and operational models (see Figure 5).

Figure 5:  Big Data / IoT Business Model Maturity IndexMaturity Index

To drive meaningful business impact, you will need to begin with the business and not the technology:

  • Engage the business stakeholders on day one,
  • Align the business and IT teams
  • Understand the organization’s key business and operational initiatives, and
  • Identify and prioritize the use cases (decisions/goals) that support those business initiatives.

If you want to monetize your IOT initiatives, follow those simple guidelines and you will dramatically increase the probability of your business and monetization success.

For more details on the Internet of Things revolution, check out these blogs:

The post Difference between Big Data and Internet of Things appeared first on InFocus Blog | Dell EMC Services.

Read the original blog entry...

More Stories By William Schmarzo

Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business” and “Big Data MBA: Driving Business Strategies with Data Science”, is responsible for setting strategy and defining the Big Data service offerings for Hitachi Vantara as CTO, IoT and Analytics.

Previously, as a CTO within Dell EMC’s 2,000+ person consulting organization, he works with organizations to identify where and how to start their big data journeys. He’s written white papers, is an avid blogger and is a frequent speaker on the use of Big Data and data science to power an organization’s key business initiatives. He is a University of San Francisco School of Management (SOM) Executive Fellow where he teaches the “Big Data MBA” course. Bill also just completed a research paper on “Determining The Economic Value of Data”. Onalytica recently ranked Bill as #4 Big Data Influencer worldwide.

Bill has over three decades of experience in data warehousing, BI and analytics. Bill authored the Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements. Bill serves on the City of San Jose’s Technology Innovation Board, and on the faculties of The Data Warehouse Institute and Strata.

Previously, Bill was vice president of Analytics at Yahoo where he was responsible for the development of Yahoo’s Advertiser and Website analytics products, including the delivery of “actionable insights” through a holistic user experience. Before that, Bill oversaw the Analytic Applications business unit at Business Objects, including the development, marketing and sales of their industry-defining analytic applications.

Bill holds a Masters Business Administration from University of Iowa and a Bachelor of Science degree in Mathematics, Computer Science and Business Administration from Coe College.

Latest Stories
Every organization is facing their own Digital Transformation as they attempt to stay ahead of the competition, or worse, just keep up. Each new opportunity, whether embracing machine learning, IoT, or a cloud migration, seems to bring new development, deployment, and management models. The results are more diverse and federated computing models than any time in our history.
On-premise or off, you have powerful tools available to maximize the value of your infrastructure and you demand more visibility and operational control. Fortunately, data center management tools keep a vigil on memory contestation, power, thermal consumption, server health, and utilization, allowing better control no matter your cloud's shape. In this session, learn how Intel software tools enable real-time monitoring and precise management to lower operational costs and optimize infrastructure...
"Calligo is a cloud service provider with data privacy at the heart of what we do. We are a typical Infrastructure as a Service cloud provider but it's been designed around data privacy," explained Julian Box, CEO and co-founder of Calligo, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Isomorphic Software is the global leader in high-end, web-based business applications. We develop, market, and support the SmartClient & Smart GWT HTML5/Ajax platform, combining the productivity and performance of traditional desktop software with the simplicity and reach of the open web. With staff in 10 timezones, Isomorphic provides a global network of services related to our technology, with offerings ranging from turnkey application development to SLA-backed enterprise support. Leadin...
While a hybrid cloud can ease that transition, designing and deploy that hybrid cloud still offers challenges for organizations concerned about lack of available cloud skillsets within their organization. Managed service providers offer a unique opportunity to fill those gaps and get organizations of all sizes on a hybrid cloud that meets their comfort level, while delivering enhanced benefits for cost, efficiency, agility, mobility, and elasticity.
DevOps has long focused on reinventing the SDLC (e.g. with CI/CD, ARA, pipeline automation etc.), while reinvention of IT Ops has lagged. However, new approaches like Site Reliability Engineering, Observability, Containerization, Operations Analytics, and ML/AI are driving a resurgence of IT Ops. In this session our expert panel will focus on how these new ideas are [putting the Ops back in DevOps orbringing modern IT Ops to DevOps].
Darktrace is the world's leading AI company for cyber security. Created by mathematicians from the University of Cambridge, Darktrace's Enterprise Immune System is the first non-consumer application of machine learning to work at scale, across all network types, from physical, virtualized, and cloud, through to IoT and industrial control systems. Installed as a self-configuring cyber defense platform, Darktrace continuously learns what is ‘normal' for all devices and users, updating its understa...
Enterprises are striving to become digital businesses for differentiated innovation and customer-centricity. Traditionally, they focused on digitizing processes and paper workflow. To be a disruptor and compete against new players, they need to gain insight into business data and innovate at scale. Cloud and cognitive technologies can help them leverage hidden data in SAP/ERP systems to fuel their businesses to accelerate digital transformation success.
Concerns about security, downtime and latency, budgets, and general unfamiliarity with cloud technologies continue to create hesitation for many organizations that truly need to be developing a cloud strategy. Hybrid cloud solutions are helping to elevate those concerns by enabling the combination or orchestration of two or more platforms, including on-premise infrastructure, private clouds and/or third-party, public cloud services. This gives organizations more comfort to begin their digital tr...
Most organizations are awash today in data and IT systems, yet they're still struggling mightily to use these invaluable assets to meet the rising demand for new digital solutions and customer experiences that drive innovation and growth. What's lacking are potent and effective ways to rapidly combine together on-premises IT and the numerous commercial clouds that the average organization has in place today into effective new business solutions.
Keeping an application running at scale can be a daunting task. When do you need to add more capacity? Larger databases? Additional servers? These questions get harder as the complexity of your application grows. Microservice based architectures and cloud-based dynamic infrastructures are technologies that help you keep your application running with high availability, even during times of extreme scaling. But real cloud success, at scale, requires much more than a basic lift-and-shift migrati...
David Friend is the co-founder and CEO of Wasabi, the hot cloud storage company that delivers fast, low-cost, and reliable cloud storage. Prior to Wasabi, David co-founded Carbonite, one of the world's leading cloud backup companies. A successful tech entrepreneur for more than 30 years, David got his start at ARP Instruments, a manufacturer of synthesizers for rock bands, where he worked with leading musicians of the day like Stevie Wonder, Pete Townsend of The Who, and Led Zeppelin. David has ...
Darktrace is the world's leading AI company for cyber security. Created by mathematicians from the University of Cambridge, Darktrace's Enterprise Immune System is the first non-consumer application of machine learning to work at scale, across all network types, from physical, virtualized, and cloud, through to IoT and industrial control systems. Installed as a self-configuring cyber defense platform, Darktrace continuously learns what is ‘normal' for all devices and users, updating its understa...
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
Addteq is a leader in providing business solutions to Enterprise clients. Addteq has been in the business for more than 10 years. Through the use of DevOps automation, Addteq strives on creating innovative solutions to solve business processes. Clients depend on Addteq to modernize the software delivery process by providing Atlassian solutions, create custom add-ons, conduct training, offer hosting, perform DevOps services, and provide overall support services.