SYS-CON MEDIA Authors: Pat Romanski, Gary Arora, Zakia Bouachraoui, Yeshim Deniz, Liz McMillan

Related Topics: Java IoT, Artificial Intelligence, @CloudExpo, @DXWorldExpo, @ThingsExpo

Java IoT: Blog Post

Demystifying Data Science | @CloudExpo @Schmarzo #BigData #AI #DataScience #ArtificialIntelligence

Data science is about identifying those variables and metrics that might be better predictors of performance

[Opening Scene]: Billy Dean is pacing the office. He’s struggling to keep his delivery trucks at full capacity and on the road. Random breakdowns, unexpected employee absences, and unscheduled truck maintenance are impacting bookings, revenues and ultimately customer satisfaction. He keeps hearing from his business customers how they are leveraging data science to improve their business operations. Billy Dean starts to wonder if data science can help him. As he contemplates what data science can do for him, he slowly drifts off to sleep, and visions of Data Science starts dancing in his head…

[Poof! Suddenly Wizard Wei appears]: Hi, I’m your data science wizard to help alleviate your data science concerns. I don’t understand why folks try to make the data science discussion complicated. Let’s start simple with a simple definition of data science:

Data science is about identifying those variables and metrics that might be better predictors of performance

The key to a successful analytical model is having a robust set of variables against which to test for their predictive capabilities. And the key to having a robust set of variables from which to test is to get the business users engaged early in the process.

[A confused Billy Dean]: Okay, but I’m still confused. I mean, how does this really apply to my business?

[A patient Wizard Wei]: Well, let’s say that you are trying to predict which of your routes are likely to have under-capacity loads so that you can combine loads. In order to identify those variables that might be better predictors of under-capacity routes, you might ask your business users:

What data might you want to have in order to predict under-capacity routes?

The business users are likely to come up with a wide variety of variables, including:

Customer name Ship to location Customer industry
Building permits Customer tenure Change in customer size
Customer stock price Customer D&B rating Types of products hauled
Time of year Seasonality/Holidays Day of week
Traffic Weather Local Events
Distance from distribution center Open headcount on Indeed.com Tenure of logistics manager

The Data Science team will then gather these variables, perform some data transformations and enrichment, and then look for variables and combinations of variables that yield the best predictive results regarding under-capacity routes (see Figure 1).

Figure 1: Data Science Process

Role of Artificial Intelligence
[A less confuse Billy Dean]:
Ah, I think I understand, but what about all this talk about artificial intelligence? From some of these commercials on TV, it appears that robots with artificial intelligence will be ruling the world. Can you say Skynet?

[A still patient Wizard Wei]: Ah, that’s just marketing. Artificial intelligence is just one of many different tools in the predictive analytics kit bag of a data scientist. But artificial intelligence – while embracing some very sophisticated mathematical, data enrichment and computing techniques – is really pretty straightforward. All artificial intelligence is trying to do is to find and quantify relationships between variables buried in large data sets (see Figure 2).

Figure 2: Understanding Artificial Intelligence

[An inquisitive Billy Dean]: Okay, I’m starting to get it, but there seems to be some many
different analytic and predictive algorithms from which to choose. How does the business user know where to start?

[A growing frustrated Wizard Wei]: Ah, that’s the secret to the process. Business users don’t need to know which algorithms to use; they need to be able to identify those variables that might be better predictors of performance. It is up to the data science team to determine which variables are the most appropriate by testing the different algorithms.

Data Mining, Machine Learning and Artificial Intelligence (including areas such as cognitive computing, statistics, neural networks, text analytics, video analytics, etc.) are all members of the broader category of data science tools. Our data scientist team has experts in each of these areas, though no one data scientist is an expert at all of them (in spite of what they tell me). The different data science tools are used in different scenarios for different needs. Think of one of your mechanics. They have a large toolbox full of different tools. They determine what tools to use to fix a truck based upon the problem they are trying to solve. That’s exactly what a data scientist is doing, just with a different toolbox of algorithms.

No single algorithm is best over whole domain; so different algorithms are needed to cover different domains. Often combinations of algorithms are used in order to achieve the best results. To be honest, it’s like a giant jigsaw puzzle with the data science team constantly testing different combinations of metrics, data enrichment and algorithms until they find the combination that yields the best results.

[An enlightened Billy Dean]: I think I’ve finally got it. All of these different algorithms and techniques are just trying to help predict what is likely to happen so that I can make better operational and customer issues. But what’s the realm of what’s possible with data and analytics; I mean, how effective can my organization become at leveraging data and analytics to power my business?

[A proud Wizard Wei]: Great question, and the heart of the big data and data science conversation. Figure 3 shows how you could use these different data science tools to progress up the Big Data Business Model Maturity Index; to transition from running your business on Descriptive analytics that tell you what happened (Monitoring stage) to Predictive analytics that tell you what is likely to happen (Insights stage) to Prescriptive analytics that tell you what they should do (Optimization stage).

Figure 3: Leveraging Artificial Intelligence to drive Business Value

In the end, the data and the analytics are only useful if they help you optimize key operational processes, reduce compliance and security risks, uncover new revenue opportunities and create a more compelling, more prescriptive customer engagement. In the end, data and analytics are all about your business.

[A satisfied Billy Dean]: That’s great Wizard Wei! Thanks for your help!

Now, what can you do about my taxes…

To learn more about “Demystifying Data Science”, come to my Dell EMC World session: “Demystifying Data Science: A Pragmatic Guide To Building Big Data Use Cases” See you there!!

The post Demystifying Data Science appeared first on InFocus Blog | Dell EMC Services.

Read the original blog entry...

More Stories By William Schmarzo

Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business” and “Big Data MBA: Driving Business Strategies with Data Science”, is responsible for setting strategy and defining the Big Data service offerings for Hitachi Vantara as CTO, IoT and Analytics.

Previously, as a CTO within Dell EMC’s 2,000+ person consulting organization, he works with organizations to identify where and how to start their big data journeys. He’s written white papers, is an avid blogger and is a frequent speaker on the use of Big Data and data science to power an organization’s key business initiatives. He is a University of San Francisco School of Management (SOM) Executive Fellow where he teaches the “Big Data MBA” course. Bill also just completed a research paper on “Determining The Economic Value of Data”. Onalytica recently ranked Bill as #4 Big Data Influencer worldwide.

Bill has over three decades of experience in data warehousing, BI and analytics. Bill authored the Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements. Bill serves on the City of San Jose’s Technology Innovation Board, and on the faculties of The Data Warehouse Institute and Strata.

Previously, Bill was vice president of Analytics at Yahoo where he was responsible for the development of Yahoo’s Advertiser and Website analytics products, including the delivery of “actionable insights” through a holistic user experience. Before that, Bill oversaw the Analytic Applications business unit at Business Objects, including the development, marketing and sales of their industry-defining analytic applications.

Bill holds a Masters Business Administration from University of Iowa and a Bachelor of Science degree in Mathematics, Computer Science and Business Administration from Coe College.

Latest Stories
Every organization is facing their own Digital Transformation as they attempt to stay ahead of the competition, or worse, just keep up. Each new opportunity, whether embracing machine learning, IoT, or a cloud migration, seems to bring new development, deployment, and management models. The results are more diverse and federated computing models than any time in our history.
On-premise or off, you have powerful tools available to maximize the value of your infrastructure and you demand more visibility and operational control. Fortunately, data center management tools keep a vigil on memory contestation, power, thermal consumption, server health, and utilization, allowing better control no matter your cloud's shape. In this session, learn how Intel software tools enable real-time monitoring and precise management to lower operational costs and optimize infrastructure...
"Calligo is a cloud service provider with data privacy at the heart of what we do. We are a typical Infrastructure as a Service cloud provider but it's been designed around data privacy," explained Julian Box, CEO and co-founder of Calligo, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Isomorphic Software is the global leader in high-end, web-based business applications. We develop, market, and support the SmartClient & Smart GWT HTML5/Ajax platform, combining the productivity and performance of traditional desktop software with the simplicity and reach of the open web. With staff in 10 timezones, Isomorphic provides a global network of services related to our technology, with offerings ranging from turnkey application development to SLA-backed enterprise support. Leadin...
While a hybrid cloud can ease that transition, designing and deploy that hybrid cloud still offers challenges for organizations concerned about lack of available cloud skillsets within their organization. Managed service providers offer a unique opportunity to fill those gaps and get organizations of all sizes on a hybrid cloud that meets their comfort level, while delivering enhanced benefits for cost, efficiency, agility, mobility, and elasticity.
DevOps has long focused on reinventing the SDLC (e.g. with CI/CD, ARA, pipeline automation etc.), while reinvention of IT Ops has lagged. However, new approaches like Site Reliability Engineering, Observability, Containerization, Operations Analytics, and ML/AI are driving a resurgence of IT Ops. In this session our expert panel will focus on how these new ideas are [putting the Ops back in DevOps orbringing modern IT Ops to DevOps].
Darktrace is the world's leading AI company for cyber security. Created by mathematicians from the University of Cambridge, Darktrace's Enterprise Immune System is the first non-consumer application of machine learning to work at scale, across all network types, from physical, virtualized, and cloud, through to IoT and industrial control systems. Installed as a self-configuring cyber defense platform, Darktrace continuously learns what is ‘normal' for all devices and users, updating its understa...
Enterprises are striving to become digital businesses for differentiated innovation and customer-centricity. Traditionally, they focused on digitizing processes and paper workflow. To be a disruptor and compete against new players, they need to gain insight into business data and innovate at scale. Cloud and cognitive technologies can help them leverage hidden data in SAP/ERP systems to fuel their businesses to accelerate digital transformation success.
Most organizations are awash today in data and IT systems, yet they're still struggling mightily to use these invaluable assets to meet the rising demand for new digital solutions and customer experiences that drive innovation and growth. What's lacking are potent and effective ways to rapidly combine together on-premises IT and the numerous commercial clouds that the average organization has in place today into effective new business solutions.
Concerns about security, downtime and latency, budgets, and general unfamiliarity with cloud technologies continue to create hesitation for many organizations that truly need to be developing a cloud strategy. Hybrid cloud solutions are helping to elevate those concerns by enabling the combination or orchestration of two or more platforms, including on-premise infrastructure, private clouds and/or third-party, public cloud services. This gives organizations more comfort to begin their digital tr...
Keeping an application running at scale can be a daunting task. When do you need to add more capacity? Larger databases? Additional servers? These questions get harder as the complexity of your application grows. Microservice based architectures and cloud-based dynamic infrastructures are technologies that help you keep your application running with high availability, even during times of extreme scaling. But real cloud success, at scale, requires much more than a basic lift-and-shift migrati...
David Friend is the co-founder and CEO of Wasabi, the hot cloud storage company that delivers fast, low-cost, and reliable cloud storage. Prior to Wasabi, David co-founded Carbonite, one of the world's leading cloud backup companies. A successful tech entrepreneur for more than 30 years, David got his start at ARP Instruments, a manufacturer of synthesizers for rock bands, where he worked with leading musicians of the day like Stevie Wonder, Pete Townsend of The Who, and Led Zeppelin. David has ...
Darktrace is the world's leading AI company for cyber security. Created by mathematicians from the University of Cambridge, Darktrace's Enterprise Immune System is the first non-consumer application of machine learning to work at scale, across all network types, from physical, virtualized, and cloud, through to IoT and industrial control systems. Installed as a self-configuring cyber defense platform, Darktrace continuously learns what is ‘normal' for all devices and users, updating its understa...
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
Addteq is a leader in providing business solutions to Enterprise clients. Addteq has been in the business for more than 10 years. Through the use of DevOps automation, Addteq strives on creating innovative solutions to solve business processes. Clients depend on Addteq to modernize the software delivery process by providing Atlassian solutions, create custom add-ons, conduct training, offer hosting, perform DevOps services, and provide overall support services.