SYS-CON MEDIA Authors: Pat Romanski, Gary Arora, Zakia Bouachraoui, Yeshim Deniz, Liz McMillan

Blog Feed Post

Getting Ready for Connected Enterprises: How We Built AppDynamics IoT Monitoring Platform

The AppDynamics End User Monitoring product has certainly evolved over time. It first launched in 2013 to monitor web applications running on browsers. Then, to address the shift of increasing mobile activity (thanks in large part to the introduction of the iPhone), we added support in 2014 to monitor iOS and Android applications.

And now, as the Internet of Things (IoT) continues to grow, more and more user interactions and business transactions are originating from embedded smart devices.

To keep pace with this shift, we launched IoT Monitoring during our Winter Release to monitor application performance on any device connected to the internet. This includes applications running on connected cars, set-top boxes, industrial gateways, smart home devices, and more.

In our first post for this series, The Importance of Business and Performance KPIs for IoT Applications, we looked into the technical and business requirements for successfully deploying and managing an IoT application. In this blog post, we’ll dive into the details of how we built our IoT Monitoring platform and its use cases.

To start, we wanted our IoT Performance Monitoring solution to support:

– Ingestion of monitored data from all hardware platforms running on any operating system (e.g., embedded Linux, QNX, mbed OS, VxWorks) and application framework (e.g., C/C++, Java, Python, Javascript, Node.js).

– Capture and transmission of monitored data with minimal overhead to the application. The solution should also operate within the device constraints for memory, computing power, and network bandwidth.

– Performance monitoring of network protocols such as HTTPS, MQTT, and AMQP.

– Generic monitoring data model applicable to different IoT verticals such as retail, transport, media, and industrial gateways.

– End-to-end visibility starting from a connected device to a data center, network equipment, and all the way to the database.

With the considerations above, let’s look into different constructs built as part of the new AppDynamics IoT platform.

Data Ingestion

One of our goals for building the IoT monitoring platform is to enable any IoT device and application framework to ingest data to our platform. These devices could range from low-powered, limited-computing, micro-controller-based devices like a smart home, to high-powered, high-memory, microprocessor-based devices like connected cars and set-top boxes. To provide flexibility for developers to monitor applications written on these devices, we released a public HTTPS REST API along with lightweight C/C++ and Java SDKs.

The SDKs provide as much flexibility as using the REST API and also handle buffering, batching, and serializing data. They do not depend on any third-party network library but use the application’s network communication to send data. This provides the developer complete control on when to capture and transmit data to the AppDynamics SaaS platform. Sample applications showing the use of REST API and SDK’s are available on github.

Data Model

In IoT, the data generated differs by application and device type. As a result, the platform must be flexible enough to capture and visualize a variety of data.

For example, in point-of-sale devices, we want to capture payment data, items in the cart, and store information. On the other hand, with a media application running on a set-top box, we want to capture video streaming stats, number of active users, and ads displayed.

In both cases, data is sent to an IoT endpoint as a beacon in JSON format. Each beacon has four constructs as outlined below. An IoT application can send one beacon at a time or batch them and send multiple beacons up to the limit defined by the platform.

Metadata

Metadata gives the platform context of the device and application configuration that is generating data. Two objects that capture metadata are DeviceInfo and VersionInfo. DeviceInfo contains fields such as device name, device type, and device ID, which help identify how many unique devices are reporting data and also derive device specific stats. VersionInfo contains fields such as software, hardware, and OS version, which help filter performance data based on the different versions.

Figure 1: Connected Devices Applications

In Figure 1, the Connected Devices tab provides a list of all applications and device types that each application is running on. You can see that there are three different applications and their respective device types:

– Retail Application has device types such as point of sale and smart shelves.

– Media Application has device types such as Roku, Fire TV, Apple TV, and Android TV.

– Car Infotainment Application has car models as device types, including Toyota, Honda Audi, and Mercedes.

IoT application data is grouped based on the device type as each device type has a unique profile in terms of the hardware, OS, and application framework. This data view enables businesses to quickly analyze application performance by device.

Figure 2:  Devices Dashboard

Figure 2 shows the Device Dashboard when Point of Sale devices are selected. The Device Dashboard presents a list of all the unique point of sale devices that were reporting data along with the metadata for each device.

Network Event

IoT is bringing connectivity to a lot of old and new physical devices. To provide a seamless user experience, it is important to ensure these devices are up and running with always-on network connectivity. Network performance is thus one of the key KPIs which help measure user experience.

AppDynamics Network Event helps capture the performance of any network request made by an IoT application. Currently, network event supports capturing HTTP requests and responses. In the future, we will extend it to support different network protocols prevalent in IoT, including MQTT and AMQP.

Figure 3: Network Request Dashboard

In Figure 3, you can see that the Network Dashboard provides details on network performance and all the URLs the application is triggering. It provides an aggregated view of network performance for the application on a specific device type.

Error Event

Reducing MTTR is a key objective for any operational team. So, it’s important to detect and diagnose application errors before it impacts user experience and business performance.

AppDynamics Error Event helps capture all types of errors including alerts, critical, or fatal errors. Alerts or critical errors are caught and gracefully handled by the application, whereas fatal errors can cause application reset.

Figure 4: Error Dashboard

Error Dashboards provide details on different types of errors, total error count, and error count grouped by application versions. Selecting a specific error will provide detailed information about the error, including stack trace if available.

Custom Event

Network and Error events help in understanding the performance of the application. But to understand the usage of an application and how that impacts business performance, we introduced Custom Events. These events help capture any data pertaining to the business, which can then be used to inform performance and business decisions.

Figure 5: Business Performance Data

As shown in Figure 5, using custom events for Point of Sale devices can help capture data such as total revenue generated, average sales over time, and the number of items sold.

End-to-End Visibility

One click or touch on an IoT device triggers a series of transactions across many components in the IT infrastructure. AppDynamics’ suite of products including IoT can tag and trace all the transactions across the entire infrastructure, thus providing end-to-end visibility.

Consider an example of self-serve movie kiosks where users can pay for their movie tickets. Figure 6, below, shows the journey of the transaction starting from the kiosk to the IT infrastructure.

Figure 6: Network Request Snapshot and Backend Business Transaction Correlation

Selecting the network request you want to trace shows an activity stream, and if the backend is instrumented with AppDynamics agents, you will see a snapshot link. The snapshot view shows how the business transaction is performing on the backend, and you can drill down into different KPIs for tier/nodes. This end-to-end visibility helps in tracking and identifying issues quickly, thereby reducing MTTR.

What’s Next?

In 4.4, we built a generic and scalable platform for IoT performance monitoring that can provide visibility into application and business performance for a wide variety of use cases ranging from point-of-sale devices to industrial gateways.

Looking ahead, there are a few emerging trends in the IoT space that we’ll be monitoring closely.

For starters, the Machina Research Annual Report predicts that the total number of IoT connections will grow from 6 billion to 27 billion by 2025. Of these, 71% of all connections will be using short range communication technologies such as wifi, Zigbee, or PLC. Adhering to this trend, there is an increasing adoption of new communication protocols such as MQTT, AMQP, XMPP, and COAP as they provide security and low overhead for IoT device communications.

What’s more, IDC analysts predict that the volume of worldwide digital data will be 163 zettabytes by 2025, and more than a quarter of this will be generated by IoT. Edge Computing is a paradigm that is playing an increasing role in better managing and deriving value from this volume of data. Edge Computing allows data to be processed near the source rather than sending it to the cloud or a data center. For example, security cameras such as Nest are using on-device vision processing to send alarms if it detects an unrecognizable person. Similarly, connected cars, smart cities, manufacturing plants, and building management systems are using data generated from sensors to derive time-critical decisions locally, instead of transferring data to the cloud and waiting for the decision.

To address these emerging trends, our IoT monitoring team is continuously evolving the platform to measure performance metrics of the new IoT communication protocols and also provide real-time performance insights at the edge, using local data filtering, processing, and modeling before sending it to the cloud. These metrics and insights will help businesses effectively manage the complexity and services in the space of IoT.

Learn more about AppDynamics IoT Monitoring by scheduling a demo or starting a free trial today.

 

The post Getting Ready for Connected Enterprises: How We Built AppDynamics IoT Monitoring Platform appeared first on Application Performance Monitoring Blog | AppDynamics.

Read the original blog entry...

More Stories By AppDynamics Blog

In high-production environments where release cycles are measured in hours or minutes — not days or weeks — there's little room for mistakes and no room for confusion. Everyone has to understand what's happening, in real time, and have the means to do whatever is necessary to keep applications up and running optimally.

DevOps is a high-stakes world, but done well, it delivers the agility and performance to significantly impact business competitiveness.

Latest Stories
While a hybrid cloud can ease that transition, designing and deploy that hybrid cloud still offers challenges for organizations concerned about lack of available cloud skillsets within their organization. Managed service providers offer a unique opportunity to fill those gaps and get organizations of all sizes on a hybrid cloud that meets their comfort level, while delivering enhanced benefits for cost, efficiency, agility, mobility, and elasticity.
Isomorphic Software is the global leader in high-end, web-based business applications. We develop, market, and support the SmartClient & Smart GWT HTML5/Ajax platform, combining the productivity and performance of traditional desktop software with the simplicity and reach of the open web. With staff in 10 timezones, Isomorphic provides a global network of services related to our technology, with offerings ranging from turnkey application development to SLA-backed enterprise support. Leadin...
DevOps has long focused on reinventing the SDLC (e.g. with CI/CD, ARA, pipeline automation etc.), while reinvention of IT Ops has lagged. However, new approaches like Site Reliability Engineering, Observability, Containerization, Operations Analytics, and ML/AI are driving a resurgence of IT Ops. In this session our expert panel will focus on how these new ideas are [putting the Ops back in DevOps orbringing modern IT Ops to DevOps].
Darktrace is the world's leading AI company for cyber security. Created by mathematicians from the University of Cambridge, Darktrace's Enterprise Immune System is the first non-consumer application of machine learning to work at scale, across all network types, from physical, virtualized, and cloud, through to IoT and industrial control systems. Installed as a self-configuring cyber defense platform, Darktrace continuously learns what is ‘normal' for all devices and users, updating its understa...
Enterprises are striving to become digital businesses for differentiated innovation and customer-centricity. Traditionally, they focused on digitizing processes and paper workflow. To be a disruptor and compete against new players, they need to gain insight into business data and innovate at scale. Cloud and cognitive technologies can help them leverage hidden data in SAP/ERP systems to fuel their businesses to accelerate digital transformation success.
Concerns about security, downtime and latency, budgets, and general unfamiliarity with cloud technologies continue to create hesitation for many organizations that truly need to be developing a cloud strategy. Hybrid cloud solutions are helping to elevate those concerns by enabling the combination or orchestration of two or more platforms, including on-premise infrastructure, private clouds and/or third-party, public cloud services. This gives organizations more comfort to begin their digital tr...
Most organizations are awash today in data and IT systems, yet they're still struggling mightily to use these invaluable assets to meet the rising demand for new digital solutions and customer experiences that drive innovation and growth. What's lacking are potent and effective ways to rapidly combine together on-premises IT and the numerous commercial clouds that the average organization has in place today into effective new business solutions.
Keeping an application running at scale can be a daunting task. When do you need to add more capacity? Larger databases? Additional servers? These questions get harder as the complexity of your application grows. Microservice based architectures and cloud-based dynamic infrastructures are technologies that help you keep your application running with high availability, even during times of extreme scaling. But real cloud success, at scale, requires much more than a basic lift-and-shift migrati...
David Friend is the co-founder and CEO of Wasabi, the hot cloud storage company that delivers fast, low-cost, and reliable cloud storage. Prior to Wasabi, David co-founded Carbonite, one of the world's leading cloud backup companies. A successful tech entrepreneur for more than 30 years, David got his start at ARP Instruments, a manufacturer of synthesizers for rock bands, where he worked with leading musicians of the day like Stevie Wonder, Pete Townsend of The Who, and Led Zeppelin. David has ...
Darktrace is the world's leading AI company for cyber security. Created by mathematicians from the University of Cambridge, Darktrace's Enterprise Immune System is the first non-consumer application of machine learning to work at scale, across all network types, from physical, virtualized, and cloud, through to IoT and industrial control systems. Installed as a self-configuring cyber defense platform, Darktrace continuously learns what is ‘normal' for all devices and users, updating its understa...
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
Addteq is a leader in providing business solutions to Enterprise clients. Addteq has been in the business for more than 10 years. Through the use of DevOps automation, Addteq strives on creating innovative solutions to solve business processes. Clients depend on Addteq to modernize the software delivery process by providing Atlassian solutions, create custom add-ons, conduct training, offer hosting, perform DevOps services, and provide overall support services.
Contino is a global technical consultancy that helps highly-regulated enterprises transform faster, modernizing their way of working through DevOps and cloud computing. They focus on building capability and assisting our clients to in-source strategic technology capability so they get to market quickly and build their own innovation engine.
When applications are hosted on servers, they produce immense quantities of logging data. Quality engineers should verify that apps are producing log data that is existent, correct, consumable, and complete. Otherwise, apps in production are not easily monitored, have issues that are difficult to detect, and cannot be corrected quickly. Tom Chavez presents the four steps that quality engineers should include in every test plan for apps that produce log output or other machine data. Learn the ste...
Digital Transformation is much more than a buzzword. The radical shift to digital mechanisms for almost every process is evident across all industries and verticals. This is often especially true in financial services, where the legacy environment is many times unable to keep up with the rapidly shifting demands of the consumer. The constant pressure to provide complete, omnichannel delivery of customer-facing solutions to meet both regulatory and customer demands is putting enormous pressure on...