SYS-CON MEDIA Authors: Pat Romanski, Gary Arora, Zakia Bouachraoui, Yeshim Deniz, Liz McMillan

Blog Feed Post

Big Data Isn’t a Thing; Big Data is a State of Mind

“Big Data is dead.” “Big Data is passé.”

“We no longer need Big Data; we need Machine Learning now.”

As we end 2017 and look forward to big (data) things in 2018, the most important lessons of 2017 – in fact, maybe the most important lesson going forward – is that Big Data is NOT a thing. Big Data isn’t about the volume, variety or velocity of data any more than car racing is about the gasoline. Big Data is a state of mind. Big Data is about becoming more effective at leveraging data and analytics to power your business models (see Figure 1).

Figure 1: Becoming More Effective at Leveraging Big Data to Power your Business

 

Big Data is a State of Mind

Big Data is about improving an organization’s ability to leverage data and analytics to power their business models; to optimize key business and operational use cases; reduce security and compliance risk; to uncover new revenue opportunities; and create more compelling, differentiated customer engagements. The technical components – building blocks – of a “big data state of mind” include:

  • Data: Ability to collect and aggregate detailed data from a wide variety of data sources including structured (tables, relational databases), semi-structured (logs files, XML, JSON) and unstructured data sources (text, video, audio, images).
  • Analytics: Ability to leverage advanced analytics (data science, deep learning, machine learning, artificial intelligence) to uncover customer, product, service, operational, and market insights.

These are important technology building blocks, but by themselves, they provide NO business or financial value. These are necessary but not sufficient capabilities for driving the most important aspect of Big Data – Data Monetization!

Big Data is About Data Monetization

Big Data is about exploiting the unique characteristics of data and analytics as digital assets to create new sources of economic value for the organization. Most assets exhibit a one-to-one transactional relationship. For example, the quantifiable value of a dollar as an asset is finite – it can only be used to buy one item or service at a time. Same with human assets, as a person can only do one job at a time. But measuring the value of data as an asset is not constrained by those transactional limitations. In fact, data is an unusual asset as it exhibits an Economic Multiplier Effect, whereby it never depletes or wears out and can be used simultaneously across multiple use cases at near zero margin cost. This makes data a powerful asset in which to invest (see Figure 2).

Figure 2: Economic Multiplier Effect

 

Understanding the economic characteristics of data and analytics as digital assets is the first step in monetizing your data via predictive, prescriptive and preventative analytics.

See the blog series at “Determining Economic Predicted Value of Data (EPvD) Series” for more insights about how organizations can exploit the unique economic characteristics of data and analytics as digital assets.

Big Data is a Business Discipline

Leading organizations that embrace digital transformation see data and analytics as a business discipline, not just another IT task. And tomorrow’s business leaders must become experts at leveraging data and analytics to power their business models. The most valuable companies today (from a market cap perspective) are those organizations that are mastering the use of Big Data (with artificial intelligence, machine learning, deep learning) to derive and drive new sources of value (see Figure 3).

Figure 3: Most Valuable Companies in the World

 

At the University of San Francisco, I teach the “Big Data MBA” where I am educating tomorrow’s business leaders how to embrace data and analytics as the next modern business discipline. A Master of Business Administration (MBA) provides theoretical and practical training to teach business leaders important business disciplines such as accounting, finance, operations management and marketing. We want to treat analytics as a similar business discipline.

Data Science is the Data Monetization Engine

Data Science is used to identify the variables and metrics that might be better predictors of business and operational performance, and to quantify cause-and-effect in order to predict likely actions and outcomes; prescribe corrective actions or recommendations; prevent costly outcomes; and continuously learn and adapt as the environment changes.

To do that, data scientists need to learn a wide variety of statistical, data mining, deep learning, machine learning, and artificial intelligence techniques and tools (see Figure 4).

Figure 4: Examples of Advanced Analytics

 

Data monetization requires close collaboration with business stakeholders who own the important responsibility of setting the business and analytics strategy. These stakeholders also unambiguously define the hypotheses to be tested, and articulate how the resulting analytic outcomes will be operationalized and monetized. The key to enlisting business leadership is to turn them into “Citizens of Data Science” and to teach them to “Think Like a Data Scientist.”

This includes:

  • Use case identification, validation and prioritization that begins with an end in mind.
  • Develop personas for each key business stakeholder and constituent to understand their responsibilities, key decisions, and impediments to success.
  • Brainstorming variables and metrics that might be better predictors of performance.
  • Creating actionable, prescriptive analytic insights and recommendations that drive measurably better operational and business decisions.
  • Articulating how the analytic outcomes will be operationalize or put into action.

Check out the infographic “Think Like A Data Scientist” for more information. It also includes a workbook that guides the “thinking like a data scientist” process.

A Big Data State of Mind

One of my favorite articles (So, What Is Machine Learning Anyways?) does a great job of summarizing the important relationship between Big Data and Machine Learning:

  • Big Data started when the Internet created a treasure trove of website and search data. Today that data has been augmented by social media, mobile, wearables, IOT, and even microphones and cameras that are constantly collecting information.
  • With so much data readily available, machine learning provides a method to organize that data into meaningful patterns. Machine learning sorts through those troves of data to discern patterns and predict new ones.
  • Machine learning plays a key role in the development of artificial intelligence. Artificial intelligence refers to a machine’s ability to perform intelligent tasks, whereas machine learning refers to the automated process by which machines weed out meaningful patterns in data. Without machine learning, artificial intelligence as wouldn’t be possible.

Though there are many critical building blocks associated with Big Data, the leading organizations are quickly realizing the Big Data isn’t a thing.

Big Data is a mindset about transforming business leadership to become more effective at leveraging data and analytics to power the organization’s business models (see Figure 5).

Figure 5: Leveraging Data and Analytics to Create an Intelligent Enterprise

 

So, how effective is your organization at leveraging #BigData and #MachineLearning to power your business models and create an intelligent organization?

The post Big Data Isn’t a Thing; Big Data is a State of Mind appeared first on InFocus Blog | Dell EMC Services.

Read the original blog entry...

More Stories By William Schmarzo

Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business” and “Big Data MBA: Driving Business Strategies with Data Science”, is responsible for setting strategy and defining the Big Data service offerings for Hitachi Vantara as CTO, IoT and Analytics.

Previously, as a CTO within Dell EMC’s 2,000+ person consulting organization, he works with organizations to identify where and how to start their big data journeys. He’s written white papers, is an avid blogger and is a frequent speaker on the use of Big Data and data science to power an organization’s key business initiatives. He is a University of San Francisco School of Management (SOM) Executive Fellow where he teaches the “Big Data MBA” course. Bill also just completed a research paper on “Determining The Economic Value of Data”. Onalytica recently ranked Bill as #4 Big Data Influencer worldwide.

Bill has over three decades of experience in data warehousing, BI and analytics. Bill authored the Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements. Bill serves on the City of San Jose’s Technology Innovation Board, and on the faculties of The Data Warehouse Institute and Strata.

Previously, Bill was vice president of Analytics at Yahoo where he was responsible for the development of Yahoo’s Advertiser and Website analytics products, including the delivery of “actionable insights” through a holistic user experience. Before that, Bill oversaw the Analytic Applications business unit at Business Objects, including the development, marketing and sales of their industry-defining analytic applications.

Bill holds a Masters Business Administration from University of Iowa and a Bachelor of Science degree in Mathematics, Computer Science and Business Administration from Coe College.

Latest Stories
Every organization is facing their own Digital Transformation as they attempt to stay ahead of the competition, or worse, just keep up. Each new opportunity, whether embracing machine learning, IoT, or a cloud migration, seems to bring new development, deployment, and management models. The results are more diverse and federated computing models than any time in our history.
On-premise or off, you have powerful tools available to maximize the value of your infrastructure and you demand more visibility and operational control. Fortunately, data center management tools keep a vigil on memory contestation, power, thermal consumption, server health, and utilization, allowing better control no matter your cloud's shape. In this session, learn how Intel software tools enable real-time monitoring and precise management to lower operational costs and optimize infrastructure...
"Calligo is a cloud service provider with data privacy at the heart of what we do. We are a typical Infrastructure as a Service cloud provider but it's been designed around data privacy," explained Julian Box, CEO and co-founder of Calligo, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Isomorphic Software is the global leader in high-end, web-based business applications. We develop, market, and support the SmartClient & Smart GWT HTML5/Ajax platform, combining the productivity and performance of traditional desktop software with the simplicity and reach of the open web. With staff in 10 timezones, Isomorphic provides a global network of services related to our technology, with offerings ranging from turnkey application development to SLA-backed enterprise support. Leadin...
While a hybrid cloud can ease that transition, designing and deploy that hybrid cloud still offers challenges for organizations concerned about lack of available cloud skillsets within their organization. Managed service providers offer a unique opportunity to fill those gaps and get organizations of all sizes on a hybrid cloud that meets their comfort level, while delivering enhanced benefits for cost, efficiency, agility, mobility, and elasticity.
DevOps has long focused on reinventing the SDLC (e.g. with CI/CD, ARA, pipeline automation etc.), while reinvention of IT Ops has lagged. However, new approaches like Site Reliability Engineering, Observability, Containerization, Operations Analytics, and ML/AI are driving a resurgence of IT Ops. In this session our expert panel will focus on how these new ideas are [putting the Ops back in DevOps orbringing modern IT Ops to DevOps].
Darktrace is the world's leading AI company for cyber security. Created by mathematicians from the University of Cambridge, Darktrace's Enterprise Immune System is the first non-consumer application of machine learning to work at scale, across all network types, from physical, virtualized, and cloud, through to IoT and industrial control systems. Installed as a self-configuring cyber defense platform, Darktrace continuously learns what is ‘normal' for all devices and users, updating its understa...
Enterprises are striving to become digital businesses for differentiated innovation and customer-centricity. Traditionally, they focused on digitizing processes and paper workflow. To be a disruptor and compete against new players, they need to gain insight into business data and innovate at scale. Cloud and cognitive technologies can help them leverage hidden data in SAP/ERP systems to fuel their businesses to accelerate digital transformation success.
Most organizations are awash today in data and IT systems, yet they're still struggling mightily to use these invaluable assets to meet the rising demand for new digital solutions and customer experiences that drive innovation and growth. What's lacking are potent and effective ways to rapidly combine together on-premises IT and the numerous commercial clouds that the average organization has in place today into effective new business solutions.
Concerns about security, downtime and latency, budgets, and general unfamiliarity with cloud technologies continue to create hesitation for many organizations that truly need to be developing a cloud strategy. Hybrid cloud solutions are helping to elevate those concerns by enabling the combination or orchestration of two or more platforms, including on-premise infrastructure, private clouds and/or third-party, public cloud services. This gives organizations more comfort to begin their digital tr...
Keeping an application running at scale can be a daunting task. When do you need to add more capacity? Larger databases? Additional servers? These questions get harder as the complexity of your application grows. Microservice based architectures and cloud-based dynamic infrastructures are technologies that help you keep your application running with high availability, even during times of extreme scaling. But real cloud success, at scale, requires much more than a basic lift-and-shift migrati...
David Friend is the co-founder and CEO of Wasabi, the hot cloud storage company that delivers fast, low-cost, and reliable cloud storage. Prior to Wasabi, David co-founded Carbonite, one of the world's leading cloud backup companies. A successful tech entrepreneur for more than 30 years, David got his start at ARP Instruments, a manufacturer of synthesizers for rock bands, where he worked with leading musicians of the day like Stevie Wonder, Pete Townsend of The Who, and Led Zeppelin. David has ...
Darktrace is the world's leading AI company for cyber security. Created by mathematicians from the University of Cambridge, Darktrace's Enterprise Immune System is the first non-consumer application of machine learning to work at scale, across all network types, from physical, virtualized, and cloud, through to IoT and industrial control systems. Installed as a self-configuring cyber defense platform, Darktrace continuously learns what is ‘normal' for all devices and users, updating its understa...
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
Addteq is a leader in providing business solutions to Enterprise clients. Addteq has been in the business for more than 10 years. Through the use of DevOps automation, Addteq strives on creating innovative solutions to solve business processes. Clients depend on Addteq to modernize the software delivery process by providing Atlassian solutions, create custom add-ons, conduct training, offer hosting, perform DevOps services, and provide overall support services.