SYS-CON MEDIA Authors: Pat Romanski, Gary Arora, Zakia Bouachraoui, Yeshim Deniz, Liz McMillan

News Feed Item

Fujitsu Develops Novel Technology to Massively Boost Optical Data Transfer Throughput Using Existing Equipment



Enables the use of multiple wavelength bands to support expanded transmission capacity between datacenters

Figure 1: Diagram and example use of optical networks connecting datacenters

Figure 2: Wavelength bands used in transmissions through optical fibers

Figure 3: Method using transceivers for different wavelength bands simultaneousy

Figure 4: Proposed new wavelength conversion technology

Figure 5: Method for expanding band usage through wavelength conversion using this technology

TOKYO, Sept 19, 2018 - (JCN Newswire) - Fujitsu Laboratories Ltd. has developed an ultra-high capacity wavelength-division multiplexing system that considerably expands the transmission capacity of optical fibers in optical networks connecting datacenters. The new technology achieves this without the deployment of new transceivers dedicated to new wavelength. Previously, in order to expand transmission capacity between datacenters, operators had to either increase the number of optical fibers being used, or they needed receivers supporting each band of wavelengths. Now, Fujitsu Laboratories has developed the world's first broadband wavelength conversion technology that can batch convert C-band(1) optical signals to new wavelength bands, including L-band and S-band, reconverting them back to the original C-band when received. Upon development of a system that converts optical signals in C-band to L- and S-bands before multiplexing and transmitting them utilizing this innovative technology, Fujitsu Laboratories successfully demonstrated in principle that transmission capacity could be tripled. This allows datacenter operators to use existing equipment as-is to raise the efficiency of optical fiber utilization and thereby expand transmission capacity. This promises to eliminate the kind of network bottlenecks that could pose challenges for high-volume users that need to store, back up, or perform parallel analysis on large volumes of data distributed between multiple datacenters. This includes cases that many expect to increase dramatically in the near future, such as transfers of unstructured data including 8K video material and device log information connected through 5G networks.

Development Background

In recent years, the use of social networks and streaming video has contributed to exponential increases in the volumes of data handled by datacenters. Moreover, many predict that data circulation will grow dramatically in the future with the spread of 5G communications and 8K video technologies. Though datacenter operators have already connected multiple datacenters with optical networks and use distributed storage for disaster recovery and distributed processing for high-speed processing, they need to expand transmission capacity even further to effectively prepare for the increases in data volume anticipated in the immediate future.

http://www.acnnewswire.com/topimg/Low_FujitsuOpticalDataFig1.jpg
Figure 1: Diagram and example use of optical networks connecting datacenters

Issues

Expanding transmission capacities between datacenters can be accomplished by increasing the number of optical fibers, however, additional fees would be assessed based on the number of optical fibers used, presenting a significant cost burden for operators. On the other hand, what could also be considered is the simultaneous use of new wavelength bands outside the C-band. Optical networks generally use the C-band for its good transmission performance, but for medium-distance transmissions of several dozen kilometers between datacenters, the impact of transmission loss with the use of other wavelength bands, such as the L-band or the S-band, is seen as quite small, and consideration may also be given to using these wavelength bands. However, this method would necessitate the separate development of transceivers that could support each band.

http://www.acnnewswire.com/topimg/Low_FujitsuOpticalDataFig2.jpg
Figure 2: Wavelength bands used in transmissions through optical fibers

http://www.acnnewswire.com/topimg/Low_FujitsuOpticalDataFig3.jpg
Figure 3: Method using transceivers for different wavelength bands simultaneously

About the Newly Developed Technology

To address these challenges, Fujitsu Laboratories developed an ultra-large transmission capacity optical wavelength-division multiplexing system (a patent application was filed) that batch converts C-band optical signals output by a transmitter into new wavelengths for transmission, and then converts them back to the original wavelength band before sending them to the receiver. First, the C-band optical signal is combined with two pump lights(2), generating a signal with mixed wavelength. The pump lights change the signal's refractive index of a nonlinear optical medium which the signal passes through and outputs converted signals at a different wavelength. A similar principle is used on the receiver side to return the transmitted optical signal to the C-band. With this newly developed technology, it becomes possible to convert an optical signal to an arbitrary wavelength band efficiently by choosing the wavelengths of two pump lights, based on the chromatic dispersion characteristics of various nonlinear optical media. Additionally, this technology can reduce the noise superimposed on the signal after wavelength conversion by synchronously controlling the pump lights. This means it can simultaneously convert the signal's wavelength efficiently while maximizing the quality of the optical signal.

http://www.acnnewswire.com/topimg/Low_FujitsuOpticalDataFig4.jpg
Figure 4: Proposed new wavelength conversion technology

http://www.acnnewswire.com/topimg/Low_FujitsuOpticalDataFig5.jpg
Figure 5: Method for expanding band usage through wavelength conversion using this technology

Effects

Using this technology, Fujitsu Laboratories created a prototype system to convert an optical signal in C-band to L- and S-bands, and then multiplexed them for transmission, successfully confirming in principle that this technology could triple available wavelength without the use of transceivers for each new wavelength band. Using this technology, transmissions using an even greater variety of different bands become possible, allowing for the expansion of transmission capacity from two to 10 times, as needed. In addition to this technology, datacenter operators can immediately make use of new C-band transceivers that will be developed going forward in wavelength bands outside the C-band.

Future Plans

Fujitsu Laboratories aims to incorporate this technology into a new lineup of the Fujitsu Network 1FINITY series of optical transmission systems, in fiscal 2019. In addition, Fujitsu Laboratories is considering extending this technology to datacenter operators, contributing to the creation of new business for its customers.

(1) C-band A wavelength band used for optical transmissions defined by ITU-T, the Telecommunication Standardization Sector of the International Telecommunication Union. The C-band refers to wavelengths of 1,530-1,565 nm, while the L-band covers 1,565-1,625 nm and the S-band covers 1,460-1,530 nm.
(2) Pump light A light that induce modulation on optical signal through refractive index change in nonlinear optical media.

About Fujitsu Laboratories

Founded in 1968 as a wholly owned subsidiary of Fujitsu Limited, Fujitsu Laboratories Ltd. is one of the premier research centers in the world. With a global network of laboratories in Japan, China, the United States and Europe, the organization conducts a wide range of basic and applied research in the areas of Next-generation Services, Computer Servers, Networks, Electronic Devices and Advanced Materials. For more information, please see: http://www.fujitsu.com/jp/group/labs/en/.

About Fujitsu Ltd

Fujitsu is the leading Japanese information and communication technology (ICT) company, offering a full range of technology products, solutions, and services. Approximately 140,000 Fujitsu people support customers in more than 100 countries. We use our experience and the power of ICT to shape the future of society with our customers. Fujitsu Limited (TSE: 6702) reported consolidated revenues of 4.1 trillion yen (US $39 billion) for the fiscal year ended March 31, 2018. For more information, please see http://www.fujitsu.com.

* Please see this press release: http://www.fujitsu.com/global/about/resources/news/press-releases/

Source: Fujitsu Ltd

Contact:
Fujitsu Laboratories Ltd.
Photonics Research Center
Photonics Innovation Project
E-mail: [email protected]

Fujitsu Limited
Public and Investor Relations
Tel: +81-3-3215-5259
URL: www.fujitsu.com/global/news/contacts/




Copyright 2018 JCN Newswire . All rights reserved.

More Stories By ACN Newswire

Copyright 2008 ACN Newswire. All rights reserved. Republication or redistribution of ACN Newswire content is expressly prohibited without the prior written consent of ACN Newswire. ACN Newswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Stories
While a hybrid cloud can ease that transition, designing and deploy that hybrid cloud still offers challenges for organizations concerned about lack of available cloud skillsets within their organization. Managed service providers offer a unique opportunity to fill those gaps and get organizations of all sizes on a hybrid cloud that meets their comfort level, while delivering enhanced benefits for cost, efficiency, agility, mobility, and elasticity.
Isomorphic Software is the global leader in high-end, web-based business applications. We develop, market, and support the SmartClient & Smart GWT HTML5/Ajax platform, combining the productivity and performance of traditional desktop software with the simplicity and reach of the open web. With staff in 10 timezones, Isomorphic provides a global network of services related to our technology, with offerings ranging from turnkey application development to SLA-backed enterprise support. Leadin...
DevOps has long focused on reinventing the SDLC (e.g. with CI/CD, ARA, pipeline automation etc.), while reinvention of IT Ops has lagged. However, new approaches like Site Reliability Engineering, Observability, Containerization, Operations Analytics, and ML/AI are driving a resurgence of IT Ops. In this session our expert panel will focus on how these new ideas are [putting the Ops back in DevOps orbringing modern IT Ops to DevOps].
Darktrace is the world's leading AI company for cyber security. Created by mathematicians from the University of Cambridge, Darktrace's Enterprise Immune System is the first non-consumer application of machine learning to work at scale, across all network types, from physical, virtualized, and cloud, through to IoT and industrial control systems. Installed as a self-configuring cyber defense platform, Darktrace continuously learns what is ‘normal' for all devices and users, updating its understa...
Enterprises are striving to become digital businesses for differentiated innovation and customer-centricity. Traditionally, they focused on digitizing processes and paper workflow. To be a disruptor and compete against new players, they need to gain insight into business data and innovate at scale. Cloud and cognitive technologies can help them leverage hidden data in SAP/ERP systems to fuel their businesses to accelerate digital transformation success.
Most organizations are awash today in data and IT systems, yet they're still struggling mightily to use these invaluable assets to meet the rising demand for new digital solutions and customer experiences that drive innovation and growth. What's lacking are potent and effective ways to rapidly combine together on-premises IT and the numerous commercial clouds that the average organization has in place today into effective new business solutions.
Concerns about security, downtime and latency, budgets, and general unfamiliarity with cloud technologies continue to create hesitation for many organizations that truly need to be developing a cloud strategy. Hybrid cloud solutions are helping to elevate those concerns by enabling the combination or orchestration of two or more platforms, including on-premise infrastructure, private clouds and/or third-party, public cloud services. This gives organizations more comfort to begin their digital tr...
Keeping an application running at scale can be a daunting task. When do you need to add more capacity? Larger databases? Additional servers? These questions get harder as the complexity of your application grows. Microservice based architectures and cloud-based dynamic infrastructures are technologies that help you keep your application running with high availability, even during times of extreme scaling. But real cloud success, at scale, requires much more than a basic lift-and-shift migrati...
David Friend is the co-founder and CEO of Wasabi, the hot cloud storage company that delivers fast, low-cost, and reliable cloud storage. Prior to Wasabi, David co-founded Carbonite, one of the world's leading cloud backup companies. A successful tech entrepreneur for more than 30 years, David got his start at ARP Instruments, a manufacturer of synthesizers for rock bands, where he worked with leading musicians of the day like Stevie Wonder, Pete Townsend of The Who, and Led Zeppelin. David has ...
Darktrace is the world's leading AI company for cyber security. Created by mathematicians from the University of Cambridge, Darktrace's Enterprise Immune System is the first non-consumer application of machine learning to work at scale, across all network types, from physical, virtualized, and cloud, through to IoT and industrial control systems. Installed as a self-configuring cyber defense platform, Darktrace continuously learns what is ‘normal' for all devices and users, updating its understa...
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
Addteq is a leader in providing business solutions to Enterprise clients. Addteq has been in the business for more than 10 years. Through the use of DevOps automation, Addteq strives on creating innovative solutions to solve business processes. Clients depend on Addteq to modernize the software delivery process by providing Atlassian solutions, create custom add-ons, conduct training, offer hosting, perform DevOps services, and provide overall support services.
Contino is a global technical consultancy that helps highly-regulated enterprises transform faster, modernizing their way of working through DevOps and cloud computing. They focus on building capability and assisting our clients to in-source strategic technology capability so they get to market quickly and build their own innovation engine.
When applications are hosted on servers, they produce immense quantities of logging data. Quality engineers should verify that apps are producing log data that is existent, correct, consumable, and complete. Otherwise, apps in production are not easily monitored, have issues that are difficult to detect, and cannot be corrected quickly. Tom Chavez presents the four steps that quality engineers should include in every test plan for apps that produce log output or other machine data. Learn the ste...
Digital Transformation is much more than a buzzword. The radical shift to digital mechanisms for almost every process is evident across all industries and verticals. This is often especially true in financial services, where the legacy environment is many times unable to keep up with the rapidly shifting demands of the consumer. The constant pressure to provide complete, omnichannel delivery of customer-facing solutions to meet both regulatory and customer demands is putting enormous pressure on...