SYS-CON MEDIA Authors: Pat Romanski, Sean Houghton, Glenn Rossman, Ignacio M. Llorente, Xenia von Wedel

Related Topics: Linux

Linux: Article

Scaling Linux to the Extreme

Superior performance and stability in all environments

Previous notions of limited scalability of Linux were abruptly changed last year by the introduction of the SGI Altix server, which scaled up to 64 processors within a single system image (SSI). Today, large-scale Linux servers with hundreds of processors are being deployed by a variety of businesses, universities, research centers, and governments around the world. NASA Ames Research Center, for example, continues to push the limits even further with their 512-processor system running a single instance of the Linux kernel.

This article examines the challenges in enabling large numbers of processors to work efficiently together to better support Linux system configurations for High- Performance Computing (HPC) environments. We will explain what scaling is, the importance of good hardware design, and the kernel changes that make scaling Linux on systems up to 256 processors and beyond possible. Finally, we will show examples of how these highly scalable Linux systems are being used to solve complex real-world problems more efficiently.

Scaling Within HPC Environments

First, let's examine the issues behind system scalability. The term scaling refers to the ability to add more hardware resources, such as processors or memory, to improve the capacity and performance of a system. There are different strategies used for scaling systems depending on the workload requirements. Enterprise business server workloads, for example, often consist of many individual, unrelated tasks that are typically deployed on systems that are smaller in nature and networked together. HPC workloads, on the other hand, are composed of scientific programs that require a high degree of complex processing, process large amounts of data, and have widely fluctuating resource requirements. Because of their demanding resource requirements, HPC programs are written and parallelized to break complex problems down to enable them to leverage system resources in parallel.

One approach used to solve HPC problems is horizontal scaling. With this approach, a program's threads run across a "cluster" of separate systems, and these threads communicate and exchange data over the network. This strategy can be used for workloads that are embarrassingly parallel, where little communication is required between program threads as they perform their computations. However, when program threads need to interact while working on a common set of data, vertical scaling provides a more efficient and better approach. With vertical scaling, threads run on a large number of CPUs all within one system, enabling processors to communicate more efficiently and to also operate upon and exchange data using global shared memory. Adding more processors to the system enables more threads to run simultaneously, thereby enabling more resources to be applied and shared to solve a problem. Vertical scaling also provides an ideal environment for using an HPC system as a central server to dynamically run different HPC programs at the same time when any one program either doesn't actually need all of the system processors or has its own scaling limitations. Whether greater processing capability for a single HPC program is required, or increasing throughput for several different HPC programs running at once, a properly designed vertically scaled system provides a flexible and superior environment for both the most demanding and the widest range of HPC applications.

Hardware Design and Scalability

Perfect scaling occurs when the number of processors added improves the workload throughput by the same factor. For instance, a four-processor system should theoretically improve processing power fourfold compared to a single processor system. In a multiprocessor system, it is critical to minimize the overhead involved with coordinating among multiple processors and utilizing shared resources. We say, "the system is scaling linearly at 90 percent up to 4 processors" if adding a second processor improves system performance by 1.8X, adding a third processor yields a 2.7X improvement, and adding a fourth processor yields an improvement of 3.6X over a single CPU. As more processors are added to a system, often a point is reached where performance no longer improves or even decreases due to hardware, kernel, or application software limitations. The goal is to improve performance by enabling multiple CPUs to scale as close to perfect as possible, and to the highest possible numbers of CPUs.

One of the keys to obtaining maximum performance is a fast system bus with high bandwidth. The extreme processing power provided by hundreds of high-performance CPUs requires multiple fast paths for handling data between CPUs, caches, memory, and I/O. The system bus found on symmetric multiprocessing systems can quickly become a bottleneck since all traffic from the CPUs uses a single, common bus to access and transfer data. Much higher system performance is available using a non-uniform memory access (NUMA) architecture since CPU accesses to memory within the same node will distribute and reduce the load on the system interconnect (see Figure 1).

A well-designed NUMA system will carefully account for the CPU bus transfer speeds, number of CPUs on any given bus, memory transfer speeds, multiple paths, and other factors to ensure that maximum overall bandwidth can be delivered throughout the system. Drawing an imaginary line through the middle of a system to examine its maximum capacity for transferring data between two halves is called bisectional bandwidth. Figure 2 shows the system bus interconnect for an SGI Altix system designed for overall maximum bisectional bandwidth and performance. In this diagram, each C-brick is a rack-mountable module containing four CPUs and each R-brick is an SGI NUMAlink module used to connect together and make a 128p SGI Altix system.

A computer architecture that is well balanced and built for maximum performance is essential to achieving good system scalability. If the hardware doesn't scale, neither will the Linux kernel or the user's application.

Linux Kernel Scalability

Linux was originally designed for smaller systems. Extending Linux to scale well on large systems involves extending various sizes and tables managed by the kernel, and then optimizing the performance for high-end technical computing. Thanks to the solid design and wide community support, Linux has adapted well to large systems.

SGI kernel engineers found that while they were clearly the first to run Linux on large system configurations of this kind, the Linux community had already done an excellent job reworking and addressing many of the issues related to Linux scalability. The types of changes made by SGI and others within the community include extending resource counters sizes, extending bit-mask sizes, and fixing commands and tools to support more than double-digit CPU numbers. Other changes included adding NUMA tool commands to help manage larger memory sizes more efficiently, increasing the limit on open file descriptors and on file sizes, and reducing boot time console messages generated by each processor, since administrating and troubleshooting would otherwise be unmanageable on systems with large CPU counts.

Once the kernel was modified to accommodate the resources of a larger system, SGI engineers focused on getting Linux to scale and perform well. One way to find scaling problems for a 256-processor system is to turn up the stress knobs while using a much larger configuration, such as a 512-processor system. Problems that otherwise would be difficult to pinpoint become obvious. Developing and testing on these larger configurations enabled the SGI engineering team to find and fix many problems that affect all multiprocessor systems of all sizes. SGI kernel engineers used several large configurations in this manner to run a variety of different HPC applications, benchmarks, and custom tests to identify and diagnose Linux scaling problems. Figure 3 shows an early 512 processor SGI Altix system, ascender, which was used by SGI kernel engineers to find and fix scaling problems.

Such testing uncovered a number of areas to change for improving scalability. For example, some system-wide kernel variables were converted to per-processor variables. This reduces memory contention on shared data such as global kernel performance statistics, since this data could be maintained separately, then combined only when needed for reporting purposes. Other scaling improvements included finding and eliminating high-contention spinlocks, reducing spinlock contention in timer routines, optimizing process scheduling algorithms, changes in the buffer cache to use per-node data structures, improved translation lookaside buffer algorithms, improved parallelism of page fault and out-of-memory handling, and identifying and removing hot cache lines due to false sharing.

Bringing It All Together

A well-designed hardware system combined with the Linux optimizations described here enables hundreds of processors within a system to access, use, and manipulate shared resources in the most efficient manner possible, enabling users' HPC programs to fully exploit the available system resources to do real work. The following three examples demonstrate the dramatic scaling and performance improvements being achieved with Linux on systems with processor counts of 128, 256, and larger.

The first example (see Figure 4) shows how adding processors to a system can dramatically reduce the elapsed time for the bioinformatics HPC application HTC-BLAST (High Throughput Computing - Basic Logical Alignment Search Tool) to process 10,000 queries with 4,111,677 total letters on a human genome database with 545 sequences and 2,866,452,029 total letters. In particular, notice that a system with 128 processors ran 1.77X faster than a system with 64 processors.

The next example (see Figure 5) shows the scaling and performance improvements achieved using a computation fluid dynamics application on an automobile external flow problem with a model size of 100 million cells. In this case the total elapsed time continues to decrease as the system configuration is extended from 64 to 256 processors.

Finally, the third example (see Figure 6) shows scaling results for an OpenMP code called Cart3D, developed and used extensively by the NASA Ames Research Center to study flows for the space shuttle. NASA Ames Research Center, known for pushing the limits of computing in pursuit of fundamental science, achieved almost 90% scaling efficiency while running this HPC code on a 512-processor SGI Altix system. SGI and NASA engineers collaborated to identify and fix many Linux scaling issues to achieve a dramatic new breakthrough on system scalability with Linux. The NASA Ames Research Center's system used for this work is shown in Figure 7.

Summary

The performance and capabilities of Linux for server environments have improved dramatically in just the last year. Scientists and others are now routinely using single-system Linux configurations with hundreds of processors to solve complex problems faster and with greater ease than had been thought possible. Testing and developing on these large configurations have proven invaluable for improving the reliability and performance of Linux on configurations of all sizes. The synergy of these scaling improvements combined with the open development model has enabled the continued advancement of Linux to become the superior operating system choice for delivering performance and stability in all environments.

More Stories By Steve Neuner

Steve Neuner is the engineering director for Linux at SGI and has been working on Linux for the past 5 years. He's been developing operating system software for system hardware manufacturers for the past 20 years.

More Stories By Dan Higgins

Dan Higgins has worked in the computer industry for 26 years in a variety of technical roles. Dan has been with SGI for the past 17 years and currently manages the Linux kernel scalability and RAS (Reliability, Availability and Serviceability) engineering team.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Latest Stories
“We help people build clusters, in the classical sense of the cluster. We help people put a full stack on top of every single one of those machines. We do the full bare metal install," explained Greg Bruno, Vice President of Engineering and co-founder of StackIQ, in this SYS-CON.tv interview at 15th Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
AppZero has announced that its award-winning application migration software is now fully qualified within the Microsoft Azure Certified program. AppZero has undergone extensive technical evaluation with Microsoft Corp., earning its designation as Microsoft Azure Certified. As a result of AppZero's work with Microsoft, customers are able to easily find, purchase and deploy AppZero from the Azure Marketplace. With just a few clicks, users have an Azure-based solution for moving applications to the...
The cloud is becoming the de-facto way for enterprises to leverage common infrastructure while innovating and one of the biggest obstacles facing public cloud computing is security. In his session at 15th Cloud Expo, Jeff Aliber, a global marketing executive at Verizon, discussed how the best place for web security is in the cloud. Benefits include: Functions as the first layer of defense Easy operation –CNAME change Implement an integrated solution Best architecture for addressing network-l...
SYS-CON Events announced today Isomorphic Software, the global leader in high-end, web-based business applications, will exhibit at SYS-CON's DevOps Summit 2015 New York, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Isomorphic Software is the global leader in high-end, web-based business applications. We develop, market, and support the SmartClient & Smart GWT HTML5/Ajax platform, combining the productivity and performance of traditional desktop software ...
“In the past year we've seen a lot of stabilization of WebRTC. You can now use it in production with a far greater degree of certainty. A lot of the real developments in the past year have been in things like the data channel, which will enable a whole new type of application," explained Peter Dunkley, Technical Director at Acision, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The BPM world is going through some evolution or changes where traditional business process management solutions really have nowhere to go in terms of development of the road map. In this demo at 15th Cloud Expo, Kyle Hansen, Director of Professional Services at AgilePoint, shows AgilePoint’s unique approach to dealing with this market circumstance by developing a rapid application composition or development framework.
The major cloud platforms defy a simple, side-by-side analysis. Each of the major IaaS public-cloud platforms offers their own unique strengths and functionality. Options for on-site private cloud are diverse as well, and must be designed and deployed while taking existing legacy architecture and infrastructure into account. Then the reality is that most enterprises are embarking on a hybrid cloud strategy and programs. In this Power Panel at 15th Cloud Expo (http://www.CloudComputingExpo.com...
"BSQUARE is in the business of selling software solutions for smart connected devices. It's obvious that IoT has moved from being a technology to being a fundamental part of business, and in the last 18 months people have said let's figure out how to do it and let's put some focus on it, " explained Dave Wagstaff, VP & Chief Architect, at BSQUARE Corporation, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
SYS-CON Media announced today that Aruna Ravichandran, VP of Marketing, Application Performance Management and DevOps at CA Technologies, has joined DevOps Journal’s authors. DevOps Journal is focused on this critical enterprise IT topic in the world of cloud computing. DevOps Journal brings valuable information to DevOps professionals who are transforming the way enterprise IT is done. Aruna's inaugural article "Four Essential Cultural Hacks for DevOps Newbies" discusses how to demonstrate the...
The move in recent years to cloud computing services and architectures has added significant pace to the application development and deployment environment. When enterprise IT can spin up large computing instances in just minutes, developers can also design and deploy in small time frames that were unimaginable a few years ago. The consequent move toward lean, agile, and fast development leads to the need for the development and operations sides to work very closely together. Thus, DevOps become...
"Our premise is Docker is not enough. That's not a bad thing - we actually love Docker. At ActiveState all our products are based on open source technology and Docker is an up-and-coming piece of open source technology," explained Bart Copeland, President & CEO of ActiveState Software, in this SYS-CON.tv interview at DevOps Summit at Cloud Expo®, held Nov 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Verizon Enterprise Solutions is simplifying the cloud-purchasing experience for its clients, with the launch of Verizon Cloud Marketplace, a key foundational component of the company's robust ecosystem of enterprise-class technologies. The online storefront will initially feature pre-built cloud-based services from AppDynamics, Hitachi Data Systems, Juniper Networks, PfSense and Tervela. Available globally to enterprises using Verizon Cloud, Verizon Cloud Marketplace provides a one-stop shop fo...
SYS-CON Events announced today that Windstream, a leading provider of advanced network and cloud communications, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Windstream (Nasdaq: WIN), a FORTUNE 500 and S&P 500 company, is a leading provider of advanced network communications, including cloud computing and managed services, to businesses nationwide. The company also offers broadband, p...
The Internet of Things is not new. Historically, smart businesses have used its basic concept of leveraging data to drive better decision making and have capitalized on those insights to realize additional revenue opportunities. So, what has changed to make the Internet of Things one of the hottest topics in tech? In his session at @ThingsExpo, Chris Gray, Director, Embedded and Internet of Things, discussed the underlying factors that are driving the economics of intelligent systems. Discover ...

ARMONK, N.Y., Nov. 20, 2014 /PRNewswire/ --  IBM (NYSE: IBM) today announced that it is bringing a greater level of control, security and flexibility to cloud-based application development and delivery with a single-tenant version of Bluemix, IBM's